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ABSTRACT

The Handbook of Acoustic Noise Control is intended to provide
an overall view of the problem of the control of acoustic noise. Since
the publication of the first two volumes, the need for their revision
has become apparent. In sme cases, material has been added to enlarge
the coverage of original sections. In others, sections have been complete-
ly re-written to present the latest experimental or theoretical infor-
mation available.

With ever-increasing interest and activity in acoustic noise con-
trol, published procedures must, of necessity, lag behind the newest
thinking in the field. There are few areas of the noise control problem
where the present answers are the *best'. As the operational requirements
for noise control devices change and as now or more powerful sound soinrces
appear in our advancing technology, better answers will have to be found.
In presenting these revised sections, an attempt is being made to keoD
up with our expanding knowledge.

This supplement contains additions and revisions to Volume I which
treated the generation and control of various types of noise sources.
Similarly, Volume II, which analyzed the interadtion between noise and
manis being supplemented. 2hese supplements, together with the un-
ohanged sections of Volumes I and II, provide a unified view of noise

• control problems.

FUBLICATE•ON REVIEW

This report has been reviewed and is approved.

IM THE CON3WIDt,

JACK BOLLERUD

Colonel, USAF (MC)
Chief, Aero Medical Laboratory
Directorate of Research
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INTRODUCTION

This section briefly describes the changes that have
been made to Volume I WADC TR 52-204, Handbook of Acoustic
Noise Control. The changes are essentially either of two
basic types. In some cases, new sections have been added
on subjects not covered in Volume I. More often, however,
the new sections reflect changes in theory or practice
which made a reorganization of the material desirable. In
one case, the new material was of a somewhat different na-
ture and was simply appended to the existing section.
These changes are detailed below to aid the reader in recog-
nizing the relative status of the old and new section. It
will be noted that the revision has proceded on a section-
by-section basis. This has necessitated certain changes in
the figure and equation numbering conventions which are also
indicated below.

All of Chapter 4 has been revised although the bulk
of the changes are in Sec. 4.1 which makes up the main part
of the chapter. The discussion of propeller noise has been
reorganized around the existing theory. Both rotational
noise and vortex noise have been treated and N. A. C. A.
charts constructed from the Gutin theory are given. The
design procedure based on the empirical PWL chart is essen-
tially unchanged although its extension to other than three
blade propellers involves a somewhat greater uncertainty
than indicated in the original section. Chiefly, the
empirical chart works in the transonic and supersonic tip
speeds where available theory is not as well developed.
Also, the two spectrum charts have been replaced by a single
curve which is similar to the transonic tip speed case of
the original section.

Section 6.3a adds to the empirical information on
axial flow compressors presented in Sec. 6.3 The new
section discusses the physical principles involved in noise
generation by an axial flow compressor. It contains a
short statement of the theoretical results to date and
illustrates them with a calculation of the absolute sound
pressure level for a compressor of given operating condi-
tions. The previous empirical design procedure is still
applicable. Nothing new is presented on centrifugal
compressors.

Section 6.5 on ventilating fans and noise from
ventilating systems is new. There is no section in Volume I
to which it corresponds.

WADC TR 52-204 xii



The sections on wall construction and floating floors
in Volume I have been greatly expanded and reorganized
around existing theory. However, the original sections are
still correct in what they say and they form a good intro-
duction to the more detailed discussion of the revised
Secs. 11.2 and 11.3. In particular, Sec. 11.3 on the Insula-
tion of Impact Sound corresponds only roughly to the
original Sec. 11.3 dealing with floating floors. The
original section has more architectural details which may be
useful to the reader.

The new section on the transmission of sound through
cylindrical shells is intended to replace completely the
original section in Volume I. Research in this field is
continuing, however, and. more experimental and theoretical
information may be expected in the future.

Section 12.1 on the specification of sound absorptive
properties of materials is new. It replaces the very short
introductory section in Vol. I which simply listed several
topics to be discussed in connection with the control of
airborne sound.

The section on the attenuation of sound in lined ducts
(Sec. 12.2) has been greatly expanded. Several different
theoretical procedures for calculating the attenuation, each
of various degrees of accuracy and usefulness are presented,
and all the available empirical information is summarized.
A tabular summary of the various procedures is given. This
revised section is intended to replace the original section
in Volume I completely.

Section 12.6a discusses the use of acoustic resonators
in free space. Since the original section discussed resonators
attached to ducts, the subject matter of the old and new
sections are complementary rather than overlapping.

Finally, Section 12.9 presents a new design procedure
for the prediction of acoustic shielding by an obstacle.
Although it is based on the same diffraction theory as the
original section, several modifications found necessary in
actual practice have been introduced.
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Because the total number of equations, figures, etc.
in each revised section do not, in general, equal the cor-
responding number in the section replaced, a new identifica-
tion scheme has been used. Previously equations, figures,
tables and references were numbered consecutively through
a chapter and were identified by chapter and/or a serial
number. Now all identification numbers refer to both chap-
ter and section in addition to a serial number. For
example, the fifth equation in Ch. 12, occurring say in
Sec. 2 is now numbered Eq. (12.2.5) while previously it
would be numbered simply Eq. (12.5). References, instead
of being a single number, such as Ref. (7) now contain a
section identification also; the fourth reference is Sec.ll.5
and is now numbered (5.4). Finally, a letter a following
a section designation indicates that the sectio-n does not
replace the previous section, but merely supplements it, e.g.,
Sec. 12.6a. Figure, equation, table and reference numbers
then contain the letter also, e.g., Fig. 12.6a.5.

A list of errata to Volume I is given at the end of
this volume.
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CHAPTER 4

AIRCRAFT PROPELLERS AND RECIPROCATING ENGINES

4.1 Propeller Noise

Introduction. The propeller, rather than the engine,
is the chief source of noise in the usual reciprocating-
engine aircraft of 200 horsepower or more. For this reason,
considerable work has been done toward explaining the action
of this important noise source. The problem has not as yet
been treated rigorously from a theoretical standpoint, but
the approximate analysis which has been done has proved
satisfactory for engineering purposes in the case of pro-
pellers operating at subsonic blade speeds and not too close
to obstacles. Also, the approximate analysis hows clearly
the role played by the various parameters which are important
in propeller noise generation, including particularly horse-
power, thrust, tip speed, diameter, and number of blades.
The results of this analysis are given here. Measurements
are cited and comparisons between theory and experiment are
shown where possible. Equations and charts for engineering
calculations are given. Their use is explained in a numerical
example at 'the end of the section.

Gutin's Theory of Rotational Propeller Noise. A rotat-
ing propeller blade~at constant speed carries with it a
steady pressure distribution. Hence, any non-axial point,
fixed in space with reference to the aircraft, experiences
a periodic pressure variation, generally of complex wave
form, always having the blade passage frequency as the funda-
mental. This periodic pressure variation is an acoustic
disturbance, and is known as the rotational noise. For
points lying in, or very nearly in, the volume swept out by
the propeller blades, and for cases where there is negligible
overlap of the pressure distributions of adjacent blades,
the pressure disturbance due to a multiple-blade propeller
can be approximated simply as a repetition, at the appro-
priate frequency, of the disturbance due to the passage of
an isolated blade. (In other words, for such near points,
the pressure disturbance at a given time is due to the
nearest blade, the influence of the more distant blades be-
ing negligible.) To this approximation, the acoustic
disturbance very near the propeller can be simply expressed,
and the disturbance at more distant points can then be
calculated by integrating the signal propagated from all
regions near the propeller. To facilitate this calculation,
the disturbance is considered to radiate from a zero-thick-
ness disk in the region swept out by the propeller. This

WADC TR 52-2o4 1



is the basis for Gutin's analysis of the rotational pro-
peller noise 1.1/. The Gutin analysis does not consider
nonperiodic disturbances (principally vortex noise), which
are produced by an actual propeller along with the periodic
rotational noise. These will be considered later. The
analysis assumes that the forward speed of the propeller is
small compared to the speed of sound.

Gutin's analysis proceeds by writing expressions for
the reaction on the air of the time-dependent thrust and
drag forces due to a single rotating propeller blade. These
forces are then expressed as a Fourier series; the funda-
mental frequency is the. blade passage frequency n 0Lwhere n
is the number of blades in the propeller and XL is the
rotational frequency in radians/sec. The force exerted on
the air by a rotating blade also depends on the thrust dis-
tribution along the blade. In the Fourier expansion, the
sine function is approximated by its argument mn CLt where m
is the harmonic number and t is the time. This is Justified
provided that the discussion is restricted to a suitably
small value of the product of number of blades and of har-
monic number, and provided that the portions of the blade
near the hub (which produce a relatively small part of the
air forces) are ignored. Gutin also shows that his
expressions, which are in no case valid for high harmonics,
are correct when the air forces are not uniformly distributed
over the width of the blade.

Expressions for the aerodynamic disturbance in the
propeller disk having now been established, the next step
is to compute the resultant acoustic effect at external
points. The coordinates shown in Fig. 4.1.1 are used.
From hydrodynamics, we can immediately write the velocity
potential g for the resultant sound field from the known
forces acting on the air due to the rotating propeller
blade 1.•/. The sound pressure is the time derivitive of
the veTl-city potential. That is, for an air density p,
the sound pressure p is pdg/dt. While this gives the
desired acoustic solution in principle, some simplifica-
tions are desirable for ease in calculation. Gutin

WADC TR 52-204 2
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y ,• ,PROPELLER DISC

FIGURE 4.1.1

Coordinate systems used in calculation of noise
radiated by a propeller.

restricts the point of observation to the xy plane, with-
out loss of generality, and also restricts r to values
much greater than the propeller diameter. The latter
stipulation will make the succeeding work inapplicable to
the near field, so that the results under this restriction
will not apply to noise levels within the aircraft itself.
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It is desirable to put the result in a form which
does not demand detailed knowledge of the distribution
of thrust and torque along the blade. This is achieved
approximately by considering the total thrust P and the
total torque M to act at effective mean radii R1 and R2
respectively. The sound pressure becomes

2•c [-P cos Z'Jn(kR1 sin l) + ncM Jn(kR 2 sin A-)]

(4.1.1)

The radian fundamental frequency is wl, c is the velocity
of sound, Jmn is the Bessel function of order mn and k = /c
where w is the frequency of the m th harmonic of w1 . Gutin
further shows that, for the lower harmonics produced by
propellers having a "small" number of blades, both R1 and
R2 are approximately equal to Rc, the radius corresponding
to the point of resultant thrust for a single blade, which
is of the order of 0.7 or 0.8 of the propeller radiusR0 .
This leads to the final simplified result,

n W1 C s l ncM
P =2- [ - P COS + 2 Jmn (kRc sin 2.)]

lc

(4.1.2)

This expression is a sum of two terms, the first of which
is the thrust term, and the second of which is the torque
term. The torque is proportional to the input power, W,
through the relation

W = M 0:, (4.1.3)

WADC TR 52-204 4
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1800 00
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FLIGHT

Figure 4.2.1

Calculated and measured distributions of
fundamental-frequency sound pressure from a
propeller. The measurements are by Kemp l l..&.,
The calculations are from the Gutin equation
(4.1.2), for values of R. equal to 0.7 R. and
to 0.75 Ro.
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/200THEORY EQ.(4.1.2)

KEMP'S MEASUREMENTS
SECOND HARMONIC

- -. 600//

1800
DIRECTION OF

FLIGHT

n=M 4.1.3

Calculated and measured distributions of second-
harmonic sound pressure from a propeller. The
measuuements are by Kemp L._ . The calculations
are from the Gutin equation, (..l.2), with RI = 0.75 1:,
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The thrust P is related to the input power by an
aerodynamic relation which Gutin gives in the form

P = (2pSW 2 Iq2 )1/3 (4.1.4)

where S is the area of the propeller disk and ý is an
efficiency factor estimated to equal about 0.75.

Gutin calculated the expected polar distribution of
radiated sound for the first two harmonics, for the follow-
ing situation: Two-blade propeller, radius 2.25 meters,
1690 kg thrust, 515 kgm torque, 13.9 rev/sec. The results
-were compared with experimental data for this situation
as taken by Paris 1.3/ and by Kemp 1.4, with values of
both 0.7 and 0.75 being tried for Rc/Ro. The comparison
with the Kemp results is shown in Figs. 4.1.2 and 4.1-3.
The agreement is fair for the fundamental, but appears to
'deteriorate for higher harmonics. This would be expected
from the nature of the assumptions made in the derivation.
Fortunately, the fundamental usually constitutes the
greatest single contribution to the sound output. Gutin's
calculations showed slightly better agreement with the
Paris data (fundamental only).

The general features of the polar patterns in Figs.
4.1.2 and 4.1.3 are found in virtually all cases of noise
generation by a propeller free of obstacles. The torque
term results in an acoustic pressure pattern which is zero
on-the propeller axis and maximum in the propeller plane.
The thrust term results in an acoustic pressure which is
somewhat smaller than the maximum torque contribution (this
need not always be true), and which is zero in the plane
of the propeller as well as on the axis. The two contri-
butions are out of phase for positions in front of the
propeller, but in phase for positions to the rear. The
combined effect of the two terms is a radiation pattern
having symmetry of rotation, which is zero on the propeller
axis and which is maximum at a position some 150 behind
the propeller plane.

N.A.C.A. Propeller Noise Charts Based on Gutin's Equa-
tion. No propeller noise analysis is available which does
no---include at least some of the approximations made by
Gutin. Fortunately, the simplified Gutin relation,

WADC TR 52-2o4 7



Eq. (4.1.2), seems to give the maximum overall sound
pressure in the far field of a propeller to an accuracy
sufficient for the usual requirements of noise-control
engineering, at least for those propellers operating at
subsonic tip speeds which are currently in use.

A convenient set of propeller-noise charts has been
computed from the Gutin relation by Hubbard 1.,ý under the
auspices of the N.A.C.A. These are reproduced in part
in Figs. 4.1.4 through 4.1.9. The independent variables
are input horsepower, propeller diameter, number of blades,
and rate of rotation or Mach number of the blade tip. The
result is read from the charts as sound pressure level at
a distance of 300 feet, at a position 1050 removed from
the forward propeller axis (approximately the position of
maximum sound pressure in ordinary cases). The sound
pressure contributions from the first four harmonics have
been added on an energy basis to give this result; hence,
the values obtained are closely representative of overall
sound pressure level, since ordinarily the contributions
of the higher harmonics drop off rapidly.

Analysis of a typical propeller radiation pattern
shows that the sound pressure level in the direction of
maximum output is about five db above the space-average
value. Hence, 5 db should be subtracted from the chart
values to obtain the space-average sound pressure level
at a distance of 300 ft. Adding 55 db to the N.A.C.A.
chart values gives approximately the power level of the
propeller as a noise source.

The Gutin result is found in the N.A.C.A. publica-
tions by Hubbard 1-5/ and others in the form and symbols
of Eq. (4.1.5). Mr-is is adapted to simple engineering
computation.

P = ... s M - T cos JmB(0.8mBMt sin

(4.1.5)

WADC TR 52-204 8
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Here m is the harmonic number; B, number of blades;
D, propeller diameter, ft; Mt, tip Mach number; s, dis-
tance from propeller hub to observer, ft; A, propeller
disk area, sq ft; PH, input horsepower; T, thrust in
pounds; P , angle between forward propeller axis and line
of observations. The effective radius has been taken as
0.8 of the total.

In Hubbard's calculations, the thrust is derived
from the input horsepower by a relation equivalent to the
one used by Gutin, Eq. (4.1.4), except that a revised
value of the constant gives thrust values which are 0.78
of those computed by Gutin's procedure. The procedure
used by Hubbard is said to be approximately correct for
propellers operating near the stall condition.

The sound pressure levels given in the N. A. C. A.
charts include an estimated contribution from the non-
periodic vortex noise, which ordinarily constitutes a
small portion of the total propeller noise power. The
basis for calculation of the vortex noise will be discussed
later. The broken lines in the charts indicate the es-
timated levels of vortex noise only.

Effect of Number and Shape of Blades on the Rotational
Noise. Two of the most important parameters which can be
altered in the propeller with a certain amount of flexi-
bility are the number and shape of the blades. It is
readily visualized that the number of the blades determines
the frequency of the fundamental blade passage tone. On
the other hand, it can be shown that the intensity of the
sound will decrease as the number of blades is increased.

A qualitative explanation for the reduction of sound
output by an increase of the number of blades can be given
on the basis of the phase cancellation of the several com-
ponent forces. A simple example is given by the generation

WADC TR 52-204 15
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II£OmI 4.1.10

Illustration of the acoustic pressure components
developed by a one-blade propeller, and of the cancella-
tio, of the odd harmonics of the original signal when
a second blade is added.
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of sound by a propeller consisting of one blade only. The
corresponding aerodynamic force is shown in Fig. 4.1.10.
In that figure the Fourier components have also been repre-
sented (not to scale). In Figure 4.1.10 the case of a two-
blade propeller is considered. The Fourier components of
the force shown in this figure indicate that the odd harmonics
(with reference to the original one-blade propeller) cancel,
while the even harmonics are reinforced. A quantitative
calculation shows that the net effect, however, is an overall
decrease in the sound intensity. For the special case in
which the tip speed, the thrust, and the input horsepower
are kept constant, while the blades are redesigned and in-
creased in number, the acoustic effect can be seen directly
from Eq. (4.1.5). The quantity which varies is mB [JmB
(0.8mBMt sin p )]. Examination of tables of Bessel functions
shows that, for typical values of the variables, this quan-
tity decreases rapidly as mB increases.

The effect of the blade width can be particularly
important for the higher harmonics. In the Gutin approxi-
mation, the force produced in the propeller plane by the
passage of an individual blade is treated as an impulse.
This is equivalent to assigning the propeller blade a
negligible width. Regier 1._/ has evaluated the spectrum
distribution corresponding to several more nearly realistic
force-time characteristics, as shown in Fig. 4.1.11. All of
these distributions have equal areas under the curves, and
thus exert equal forces on the propeller. The horizontal
line for the zero-width blade corresponds to the uniform
Fourier amplitudes in the Gutin approximation; the other
curves show the new distributions which replace this one in
the case of finite blade width. It is apparent that increas-
ing the width of the blade, while the thrust is kept constant,
decreases the intensity of the radiated sound through reduc-
tions in the amplitudes of the higher harmonics.

The role played by the number and kind of blades
in the total noise radiated by a propeller is illustrated
in a series of experiments by Beranek, Elwell, Roberts,
and Taylor ._7/. The experiments consisted in measuring
the noise radiated in flight, by certain aircraft of less
than 200 horsepower, for propellers of two, three, four,
and six blades. The propellers exerted approximately
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equal thrusts and were of nearly the same diameter. The
results may be summarized approximately by the statement
that the intensity if lowered 6 db for each doubling of
the number of blades in the propeller, the input power
and the speed of rotation remaining fixed.

Hicks and Hubbard 1./ measured the noise from
small propellers of two, foT ur, and seven blades under
controlled conditions, and compared the measured sound
levels with calculations from the Gutin equation. A
selection of typical results is given in Table 4.1.1.
The sound pressure levels refer to a point 30 ft from the
propeller hub, in open air, in a direction 1050 from the
forward propeller axis. The blade angle is 16.50.

TABLE 4.1.1

MEASURED SOUND PRESSURE LEVELS FROM 4-FO0T DIAMETER PROPELLERS AND

CALC0LATED LEVELS FROM THE GUTIN EQUATION - REFERENCE 1.8

Overall SPL of
SPL by SPL by Rotational

Input Wave Wide-Band Noise, from
Number of Tip Mach 'Horse- Analyzer Measure- Gutin

Blades Number power Method ment Equation

db db db

2 0.3 3.5 79.6 85.8 83.8

.5 20.5 95.9 95.9 98.0

.7 65.8 111.4 110.4 111.1

.9 148.2 123.4 121.6 123.0

4 0.3 6.0 75.8 81.9 65.8

.5 34.2 94.3 96.9 90.9

.7 110.0 llO.6 111.5 110.5

.8 167.8 116.8 116.4

7 0.3 10.7 68.8 78.3 38.4

.5 53.0 85.0 89.9 80.9

.64 124.o 99.2 100.0 98.6
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The results by the wave analyzer method refer to the
square root of the sum of the squares of the amplitudes
for the first five harmonics of the blade passage fre-
quency. This method therefore measures the level of
the periodic rotational noise, provided that the effect
of other noise components falling within the pass band
of the wave analyzer (25 cps) in negligible. The
calculated values represent the square root of the sum
of the squares of the individual calculated amplitudes
for the first five harmonics.

For each propeller, the SPL measured by the wave
analyzer method and that measured by the wide-band
method in the range of Mach numbers above about 0.6,
are both closely equal to the value predicted by the
Gutin theory. This means that the noise at the higher
Mach numbers is almost entirely of the rotational type,
and that its overall level under these conditions is
adequately predicted by Gutin's equation. Thus, as far
as operation at the higher Mach numbers Is concerned,
theory and experiment agreeas to the amount of reduction
in noise level which is obtained by increasing the num-
ber of propeller blades and reducing the tip speed. For
example, in Ref. 1.8 it is found that for a tip Mach
number of 0.7, 66 horsepower can be absorbed by the 2-
blade propeller with a 16.50 attack angle, and 76 horse-
power by the 7-blade propeller with a 100 attack angle.
Although the horsepower is nearly the same, the second
configuration gives a wide-band sound pressure level of
101 db, as compared to 110 db for the first. The calcu-
lated values are 100 db and 111 db.

In the results for each propeller configuration in
Table 4.1.1, the overall SPL at the lower Mach numbers
is greater than the SPL by the wave analyzer method,
which is in turn greater than the calculated value from
the Gutin equation. These effects are explained at
least partially by the additional observation that the
sound at the lower Mach numbers consists mostly of
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nonperiodic vortex noise rather than periodic rota-
tional noise. In the theory of vortex noise, which is
discussed at the end of this section, it is shown that
this should occur, because vortex noise decreases less
rapidly than rotational noise as the tip speed is reduced.
The data in Ref. 1.8 do not show conclusively whether or
not the Gutin theory remains approximately correct for
rotational noise alone at the lower Mach numbers, since
it is not certain at what point the wave analyzer results
begin to represent vortex noise. These experiments seem
to show, however, that the Gutin equation predicts
overall propeller noise to adequate engineering accuracy
under those operating conditions where rotational noise
is dominant.

Deming's Extension of the Gutin Theory. Demirig L./
attempted to improve upon the Gutin approximations by
including the finite thickness of the propeller blades
in the analysis, and by introducing the concept of distri-
buted aerodynamic forces, instead of assuming the force
concentrated at one value of the radius. It was hoped
that considering the finite thickness of the blades would
improve the accuracy of the calculations for the higher
harmonics, for which the assumption that the propeller
thickness is much less than the wavelength of the radiated
sound is not Justified. Deming also performed a careful
series of experiments. It was found that the particular
improvements which he had made in the Gutin theory did
not yield results appreciably different from Gutin's,
but that the experimental work showed a greater disagree-
ment with the theory than Gutin had originally suggested.
Figure 4.1.13 shows a comparison between Gutin's and Deming's
calculations, together with Deming's measurements.

The Effect of Forward Speed upon Propeller Rotational
Noise. The Gutin equation must be modified, when it is
TaiTed to find the noise radiated by a propeller moving
forward in the air, to take into account the fact that
the forward speed- alters the effective acoustic path length
from an element in the propeller disk to the point of
observation. Garrick and Watkins 1.1y have worked out
the necessary changes in the theory. Their result for the

WADC TR 52-204 21



far field is given in Eq. (4.1.6). The point of observa-
tion remains in a fixed position relative to the moving
propeller.

Fp (wTM + - '\ - Bec 1 (IUCDmw1yR0

(4.1.6)

In this equa.-lon, m is the harmonic number; wl, funda-
mental frequency in radians/sec; c, speed of sound; p
denotes/1- M2; M, Mach number for forward speed; T,
thrust; Q, torque; B, number of blades; Rc, effective blade
radius; x,y, coordinates as in Fig. 4.1.1. Setting P equal
to unity gives a result equivalent to Eq. (4.1.2) or
Eq. (4.1.5) for a statically operatedt propeller..

It is found from Eq. (4.1.6) that the effect of in-
creasing the forward speed, for a propeller operating at
constant thrust, is to increase the noise output and to
alter the directional distribution in a somewhat compli-
cated fashion. Garrick and Watkins also give equations for
computing the near field of the propeller with forward
speed.

The effect of increasing the forward speed under condi-
tions of constant thrust corresponds to a hypothetical case
which is of less practical interest than the effect of
increasing the forward speed and allowing the thrust to
decrease in the manner of an actual propeller. Apparently
this decrease of thrust will usually cause the noise of
an actual propeller to decrease with increasing forward

FIGURE 4.1.12

Comparison of observed sound pressure distribution
around a propeller with Gutin's and Deming's theories.
Measured distribution, _ ; Gutin's prediction -----
Deming's modified result, _ _ _ _. Part A, funda-
mental frequency; Part B, second harmonic; Part C,
third harmonic; Part D, fourth harmonic
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FIGURE 4. ±.13
Polar diagrams of the distribution of rms sound pressure for a 2-blade,

10-foot diameter propeller, for various values of forward-speed Mach
number, M. Solid lines, values along a line 20 ft from the axis and
parallel to it. Broken lines, true polar patterns at constant radial
distance of 20 ft. The blade angle is always adjusted so that the input
is 815 horsepower at a torque of 2680 lb-ft. The thrust values are
shown in the figure. From Ref. 1.10.
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speed up to Mach numbers of about 0.4. Garrick and Watkins
have calculated the noise output of a two-blade propeller
for various forward speeds, with the thrust values taken
from actual aerodynamic measurements. The results are
shown in Fig. 4.1.13. The initial drop of noise output as
the forward speed increases is confirmed in a measurement
by Regier /, who found that the overall noise developed
by a light trainer airplane in normal flight is 6 db less
than that produced by the same airplane in static ground
operation.

As a practical matter, the distinction between the
Gutin relation and the modified equation for the case of
forward flight, Eq. (4.1.6), may be neglected for forward
speeds up to M = 0.3. At this. speed, the value of f has
dropped only to 0.95, from the value 1.00 corresponding to
static operation. Therefore, within this range, the effect
of forward speed may be represented adequately by making
the appropriate changes in the thrust value used in the
original Gutin approximation.

Noise Levels Very Near a Propeller. Calculation of
the noise levels near a propeller by Gutin's method requires
that some of the convenient geometric approximations be
omitted and that more complicated integrations be carried
out. These calculations have been done by Hubbard and
Regier 1 for several cases. The work of Garrick and
Watkins on the moving propeller, described above, also per-
tains largely to the near field.

Hubbard aad Regier found that near-field calculated
sound pressures, for the first few harmonics, were in good
agreement with experiments performed with model propellers
of diameters 48 to 85 inches, the range of propeller-tip
Mach numbers being 0.45 to 1.00. The observed pressure
increases very rapidly as the measuring point is brought
close to the propeller tips; this behavior corresponds
closely to what would be observed if the propeller tip
were the effective noise source in the very near field.
The distribution of sound pressure in the propeller plane
can be expressed conveniently in terms of d/D, where d is
distance from the propeller tips, and D is the propeller
diameter, for a given propeller shape and given rotational
speed. On this basis, good agreement was obtained between
observations taken near the full-sized propellers, and
extrapolated results of the model studies.
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The sound pressure ahead of the propeller plane is
out of phase with that behind the propeller plane in most
cases where the near field was investigated. A plane wall
(simulating a fuselage) placed Just behind the microphone,
parallel to the propeller axis, and 0.083 of a propeller
diameter from the tips, doubles the pressure reading for
a given location by reflection, but does not seem to react
on the acoustic behavior of the propeller. (This conclu-
sion might not hold if the wall were brought much closer
to the propeller tips.)

Input power and tip speed are of primary importance
in determining the near field. At the lower tip-speed
Mach numbers, the sound pressure for given tip speed and
input power is reduced by using a propeller with a greater
number of blades, but this difference virtually disappears
at Mach 1.0. At constant power, the pressure amplitudes
of the lower harmonics tend to decrease, and of the higher
harmonics to increase, as the tip speed is increased. The
difference in sound pressure produced by square and rounded
tips is found to be very slight, with the square tips pro-
ducing about 1.0 db higher SPL than the round, in a very
restricted region near the propeller plane. Also, blade
width is found to have no important effect.

Further, Hubbard and Regier compared their more
accurate near-field calculations with the results obtained
by using the Gutin equation for the near field, in the
plane of the propeller. It is found that the Gutin equa-
tion under-estimates the SPL in this situation. Apparently
the discrepancy becomes less than 2 db when the distance
from the propeller tips is greater than one propeller dia-
meter, so that the Gutin equation is sufficiently accurate
for many purposes at distances greater than this.

Where it is desired to know the overall sound pres-
sure level of propeller noise immediately within an air-
plane cabin, at a location near the propeller tips, the
experimental findings of Rudmose and Beranek 1A3J1 may be
used. They analyzed data taken within some 5=5ypes of
aircraft of the period 1941-1945; in seven types, a
systematic study of the parameters which influence the low-
frequency propeller noise was made.
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The following generalizations were made:

(a) The SPL increases by about 2.7 db for each
increase of 100 ft/sec in propeller tip speed.

(b) The SPL increases by approximately 5.5 db for
each doubling of the horsepower per engine.

(c) The SPL increases rapidly as the clearance
between the propeller tips and the fuselage
Is decreased below 8 inches, but becomes rela-
tively independent of this clearance when the
value is above 20 inches.

(d) Propellers with blunt tips produce more noise
by several db than propellers with fine pointed
tips. The results are summarized in Eq. (4.1.7).

SPL = 102+_ - 21+18.3 log HP0 +0.027(Vo - 700)

(14.1.7)

Here d is the minimum propeller-fuselage distance in
inches, HP is the horsepower delivered to each propeller,
and Vo is the propeller-tip speed in ft/sec. This equa-
tion is intended to give the SPL in each octave band
below 150 cps, existing within a typical cabin, at about
2 ft from the wall, in a section of the airplane within
6 ft of the plane of the near propellers, there being no
bulkhead between the observation point and the propeller
plane. The relation represents data for two- and four-
engine aircraft, and refers primarily to 3-blade pro-
pellers. Subsonic tip speeds are assumed. The authors
found that approximate noise levels for 4-blade and
2-blade propellers could be obtained from the same equa-
tion by multiplying the actual horsepower per engine by
3/4 and 3/2, respectively, before inserting the horsepower
value in the equation. The amount by which the overall
propeller SPL in the cabin exceeds the above octave-band
value seems to be at least 3 db in all cases, and more
usually of the order of 5 db. This figure will increase
with increasing tip speed because of the rising pre-
ponderance of high harmonics, mentioned by Hubbard and
Regier.
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The Rudmose-Beranek experimental results can be
reconciled fairly effectively with the theoretical analy-
sis. The increase of SPL by 5.5 db for each doubling of
input power agrees closely with the predictions of the
propeller charts, Figs. 4.1.4 - 4.1.9, which show that
this effect is generally 5 to 6 db per power doubling.
The increase of SPL at the rate of 2.7 db per 100 ft/sec.
increase of tip speed, as reported by Rudmose and Beranek
for the low frequencies, is somewhat less than that pre-
dicted in Figs. 4.1.4 - 4.1.9, where the effect is about
20 to 30 percent greater than this, for three-blade
propellers. This discrepancy is qualitatively reasonable,
however, because the charts include the combined effect of
four harmonics, and it is known that the effect of tip
speed goes up with increasing harmonic number. The
critical effect of clearance between the propeller tip and
the fuselage is predicted in the analysis and measurements
by Hubbard and Regier 1. The final observation of
Rudmose and Beranek, that propellers with fine pointed tips
produce a lower cabin sound level, is superficially in
contradiction to the findings of Hubbard and Regier, but
can probably be interpreted to mean that an extreme change
of blade shape, in this sense, causes the effective sound
source for fine tip blades to be located further in from
the tip of the propeller. The absolute levels given by
Eq. (4.1.7) are considerably lower than those given by
free-space propeller theory, since Eq. (4.1.7) includes
the noise reduction afforded by a typical cabin.

Dual-Rotating Propellers. Hubbard 1.14/ has applied
Gutin's analysis to dual-rotating propellers, and has
found reasonably good agreement with the results of experi-
ments on a model unit comprised of two, two-blade, 4-ft
diameter propellers. The sound field no longer has
circular symmetry about the propeller axis, but instead has
maxima in the directions of blade overlap. These maxima
of sound pressure correspond closely to the amplitude
which would be produced by a single propeller having the
same number of blades as the total in the tandem unit.
The intervening pressure minima have amplitudes correspond-
ing closely to the output of one of the dual propellers
only. If the two propellers rotate at slightly different
speeds, the pattern of maxima and minima then rotates,
and the sound reaching the observer is consequently
amplitude modulated. When the number of blades is not
the same in the front and rear units, this modulation is
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found only for harmonics which are integral multiples
of both fundamental frequencies; forýexample, the lowest
modulated harmonic of a three-blade, two-blade dual-rotat-
ing propeller is the sixth. The case of tandem propellers
operating side by side was also investigated, and similar
phenomena were found. The results thus far mentioned are
not critically affected by the separation of the propellers.

An additional signal, the "mutual interference noise",
is developed when the spacing of the dual-rotating elements
is made small. This noise component appears to be a maxi-
mum on the forward axis of rotation, where the rotational
noise is small, and has a fundamental frequency equal to
the blade passage frequency. The mutual interference
noise is undetectable at positions near the propeller plane,
where the rotational noise is strong, and apparently
consitutes only a small fraction of the total power
radiated by the propeller. The pressure amplitude of this
additional noise component varies as the propeller power
and as the cube of the tip speed, according to measure-
ments on the axis. The effect of spacing is critical; in
Hubbard's experiment, the mutual interference noise is
the predominant signal on the forward axis at a spacing of
6 3/ff, but is not detectable with certainty at a spacing
of 12".

The Effect of Struts on Propeller Noise. While no
theoretical analysis has been made of the effect of a
strut near the propeller plane, the experimental evidence
indicates that a much more serious disturbance is produced
by a strut ahead of the propeller than by one behind.
This question was examined in the work on dual-rotating
propellers described above. No strut effect was reported
for the tractor propeller, which was supported by a strut
placed behind. The pusher propeller (supported by a strut
ahead) was found to give 3 db higher overall SPL than the
tractor when the pusher strut clearance was 11.75 inches,
and about 7 db higher SPL than the tractor when this
clearance was 5.75 inches. The effect is nearly independent
of tip speed.

An increase of noise resulting from a strut ahead of
the propeller was also reported by Roberts and Beranek
1.,/ in a series of experiments on quieting of a pusher
amphibian. The total noise power radiated by this air-
plane was greater than that from a tractor airplane operate-
ing at greater power and tip speed. The sound level
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measured from the pusher did not drop off sharply to the
rear as it does for a tractor airplane, and as the Gutin
theory predicts. Whereas the noise output of a tractor
airplane for specified power and tip speed can be de-
creased by increasing the number of propeller blades,
in at least qualitative agreement with the Gutin theory,
the pusher airplane was found to become noisier as the
number of blades was increased above four.

Supersonic Tip Speeds and Empirical Propeller Noise
Chart.- The Gutin theory of rotational noise and its
varfious modifications are all restricted to subsonic tip
speeds. At present, the knowledge of propeller noise
generation for supersonic tip speeds is restricted to
experimental findings. In general, the experimental data
show that there is no discontinuous change in noise out-
put as the propeller goes into the supersonic range. At
or near the beginning of the supersonic range, however,
the noise power output becomes nearly independent of tip
speed, as shown in N. A. C. A. experiments L on a
model propeller, the sound output of which was in good
agreement with the Gutin theory in the subsonic range.
A less extensive series of measurements by a commercial
laboratory (unpublished), on full-scale propellers, seems
to indicate that the noise output for supersonic tip
speeds also becomes relatively independent of input power.
This statement is based upon observations of 10- and 16-ft
diameter propellers in the range 800 to 2000 horsepower.

In the absence of a suitable theory of noise genera-
tion in the range of supersonic tip speeds, the empirical
chart in Fig. 4.1.14 has been prepared as an approximate

FIGURE 4.1.14
Propeller noise chart, constructed from experimental data,
shoving the approximte acoustic power level for tip speeds
into the supersonic range. The chart applies to 3-blade
propellers, of diameter approximately 12 ft. Power levels
for 2- and 1-blade propellers lie approximately 2 db above
and below the chart values, respectively. For operating
conditions to the upper right of the broken line, propeller
noise usually exceeds the exhaust noise from a reciprocating
engine, but for operating conditions to the lower left,
exhaust noise my predominate (see Sec. 4.3).
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summary of existing information. This chart gives the
overall power level of the propeller when the input horse-
power and the tip speed are known. The information for
tip speeds of 1000 ft/sec and greater was taken from the
two sources mentioned above. The subsonic portion of the
chart is arbitrarily drawn to have the dependence on tip
speed and input power which was reported by Rudmose and
Beranek for low frequencies, as shown in Eq. (4.1.7); on
the basis of propeller noise theory, slightly greater
effect of tip speed might be argued. The absolute
values indicated by the subsonic curves are determined
in part by the low-speed portions of the data on large
propellers mentioned above, and in part by several mea-
surements of ground and flight operation of actual aircraft
under known conditions. Where measurements were taken with
a microphone very near the ground and within 50 ft of the
source, pressure doubling at the microphones was assumed,
and 6 db was subtracted from the SPL reading. Where the
microphone was 200 ft or more from the source, so that
ground attenuation might be more important, this reflection
correction was arbitrarily reduced to 3 db. To get the
power level for an outdoor propeller from the SPL measured
in one direction, use was made of the typical propeller
directivity curve shown in Fig. 4.1.15. The individual data
points used to make the chart are generally consistent
with the final chart values within 4 db. The extension
of the curves into the supersonic range is determined by
very few measurements and is therefore tentative.

The chart in Fig. 4.1.14 does not show the effect
of propeller diameter or of number of blades. The chart
is an approximate average of data for propellers of two,
three, and four blades, and is most nearly correct for
three blades. Very roughly, values for propellers of two
and four blades lie 2 db above and below the chart values,
respectively. The chart is most nearly correct for pro-
pellers of diameter 12 ft; for 3-blade, 12-ft propellers,
the subsonic portions of this chart are generally in agree-
ment with the charts based on Gutin's equation, Figs. 4.1.4
through 4.1.9, within 3 db. For propellers of about this
size, the empirical chart in Fig. 4.1.14 may be used in
lieu of the detailed charts for engineering predictions.
Either this chart or the detailed charts, properly applied,
should predict overall static propeller noise within ± 5 db
in most instances.
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Parkins and Purvis l.L~j have measured maximum
sound levels beneath a number of types of 2- and 4-
engine aircraft immediately after takeoff, and have
reduced their results to a standard distance. If it is
assumed that the aircraft as a whole has approximately the
same directivity as a propeller*, so that the maximum SPL
is approximately 5 db above the space-average value, and
if it is assumed that the noise powers from the propellers
on a given airplane are additive, these data can be reduced
to give the power level of a single propeller under take-
off conditions. It is found that the power levels obtained
in this way are typically 8 db lower than those predicted
by the chart in Fig. 4.1.14. Therefore, 8 db should be
subtracted from the chart values to obtain power levels
for flight conditions following takeoff. This correction
is in the expected direction, inasmuch as the chart refers
to static operation, for which noise generation is greatest.

The Spectrum of Propeller Noise. The theories of
propeller noise do not give a generally successful treat-
ment of the frequency distribution of the sound energy.
The success of the theories in predicting overall sound
power is attributable partly to the fact that a large part
of the energy radiated is found in the first few harmonics
of rotational noise. The theoretical calculations of rota-
tional noise generally underestimate the amplitudes of the
higher harmonics. Moreover, a large part of the high-
frequency energy often comes from vortex noise, the ampli-
tude of which is not rigorously predictable at present.
Theoretical considerations of both rotational and vortex
noise agree qualitatively, however, that the high-frequency
energy increases relative to the low-frequency energy as
the propeller tip speed is increased (at least, in the
subsonic range).

* rSnme unpublished measurements of the polar sound distribu-
tion for an airplane operating on the ground show that this
assumption is reasonable. The observed distribution is
similar to that in Fig. 4.1.13, which is for a propeller on
a test stand, except that the sound levels behind the actual
airplane do not fall off as rapidly for points toward the
front of the plane.
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The octave-band spectra measured immediately beneath
several types of transport airplanes shortly after takeoff,
presumably under full-power operation, are shown in
Fig. 4.1.16. The information is from Ref. 1.17. There is
a remarkable similarity in the results for the several air-
planes, except that the two-engine airplane (of considerably
lower horsepower than the others) gives relatively less
noise in the two highest octave bands. The arbitrary curve
drawn in this figure is a suggested design curve for
engineering prediction of the propeller noise spectrum under
takeoff conditions, for transport airplanes. It is assumed
that the observed noise from a propeller-driven aircraft
at takeoff is due to the propellers. The results shown
here will be duplicated only in measurements taken fairly
near the aircraft and over a hard surface. Because atmos-
pheric and terrain attenuation of sound rise with increasing
frequency, spectra measured over absorbing terrain, or at a
distance of the order of thousands of feet, will have
appreciably lower relative levels in the highest bands than
those shown. The relative high-frequency content of pro-
peller sound also decreases upon change from takeoff to
cruising operating conditions, but data are not available
to show precisely the extent of the effect.

Vortex Noise. It has been generally assumed that
the nonperiodic part of the propeller noise (ordinarily
less than the periodic part) is associated with the
shedding of vortices (eddies) in the wake of the moving

FIGuRE 4.1.15

Directivity pattern computed from overall SPL for a
propeller on an outdoor test stand. The directivity
is the difference in db between observed SPL in a
given direction and the SPL vhich vould be observed
vith non-directional radiation of the same total
sound power. Computed from data in Ref. 1.16.
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blade. These vortices are a normal consequency of the
instability of fluid flow past an object of more or less
cylindrical shape. Under idealized conditions, the
vortices form and tear away from the obstacle in regular
fashion, to form a Karman vortex trail 1 as shown in
Fig. 4.1.18. While pressure fluctuations are registered
by a detector placed in the trail, it can be proved that
the vortices in the trail cannot radiate sound. their
pressure distributions fall off very rapidly with distance.
The sound radiated by the vortex shedding process must arise
from the immediate vicinity of the obstacle, as in the
region AO'O"B, and must be the result of the pressure im-
pulses which occur whenever the flow system of a vortex is
suddenly torn from the obstacle.

Some idea of the process is given by dimensional
analysis. The intensity of an acoustic wave is given by

I = p2 /Pc (4.1.8)

where p is the fluid density, and c the speed of sound.
Let the acoustic pressure p be measured in units of
1/2 (pu 2 ), where u is the flow velocity past the obstacle,
which can be expressed in terms of the Mach number,
M = u/c. Then the intensity is

4
I = OPU4 (4.1.9)c

where B is a coefficient which may be a function of the
Reynolds number, Re = put /p of the Mach number M, orn/r,
where I is some dimension of the body and r the distance
to the point of observation, and also of Q,g, the
azimuth and zenith angles of the point of observation
with respect to some reference axes. The symbol p denotes
the viscosity coefficient of air.

FIGURE 4.1.16
Propeller noise spectra measured beneath several types
of 2- and 4-engine airplanes imnediately after takeoff.
Data from Ref. 1.17. The chart shows the amount by
which the power level for each octave band differs from
the overall power level. The curve is a suggested basis
for engineering estimates of the spectrum for transport
airplanes under takeoff conditions.
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For large distances, the law of conservation of
energy will require that the intensity fall off with the
square of the distance, as expressed by the next rela-
tion

13 ReZ. MY9. BI (Re, M, @, )

r
(4.1.1o)

Furthermore, the Mach number effect must occur as a
multiplier, since the sound intensity must vanish for
incompressible fluids (c -00). Thus, the preceding
equation may be rewritten as

B =-I Mn )B " (Re., 9, •

n

where the Mach number effect has been generalized as a
power series in M. An approximate solution will be
sought by retaining one term of the series. It can be
shown that the exponent n = 1 corresponds to a simple
source, and n = 2 to a dipole. The simple source may be
ruled out on the basis that the observed radiation is
directional, or through a theoretical argument which
shows it to be inconsistent with the aerodynamic flow
situation. With the exponent n = ?, it is evident that
the sound intensity will vary as uO. When the direc-
tional function for a dipole is inserted, the final
expression for the intensity is

I = L (e )Cos 2 Ap U6

r c

(4.1.12)

Here A, the projected area of the obstacle in the
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direction of fluid flow, has been written instead of
1..2. The coefficient CC (Re) cannot be determined from
dimensional analysis alone. In the case of a propeller
blade, it is found that the dipole radiation pattern has
its maxima on the propeller axis.

While the noise generated by vortex shedding is
not periodic in ordinary practical situations, the rate
of shedding vortices is in principle a constant in the
case of steady flow around a uniform cylinder. Strouhal
argued by dimensional analysis that the frequency of
vortex shedding from a cylinder is

f = K 11(4.1-13)

where d is the diameter. He found an experimental
value of K of about 0.185. This quantity is actually
a function of the Reynolds number, rnd is 0.18 for
Reynolds numbers from 103 to 3 x.10 .

_ ,
I22

I I

OBSTACLE VORTICES

FIGUBE 4.1.17

Idealized Karman's vortex trail.
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Evaluation of Vortex Noise Intensity. The knowledge
of vortex noise is not yet entirely satisfactory from a
quantitative standpoint. Stowell and Deming 1../ experi-
mented with a device in which circular rods, rather than
blades, projected from a rotating hub, and found the inten-
sity of the radiated sound to be proportional to the
projected area A and to the sixth power of the velocity,
as predicted by Eq. (4.1.12). In a later N.A.C.A. experi-
ment 1 , the constant of proportionality was evaluated
from measurements on a helicopter blade. On this basis,
Hubbard adopted the engineering equation below to give the
overall intensity level (essentially equal to SPL) of vor-
tex noise at a distance of 300 ft from a propeller, presum-
ably for those directions where the sound is strongest.

kA6
IL = 10 log10  B (4.1.14)

10i lO

The value of k is given by 3.8 x 10-27. The symbol VO7
denotes section velocity at 0.7 of. full radius, in ft/sec;
AB denotes total plan area of blades, which is roughly
proportional to the area A of Eq. (4.1.12) if consistent
operating conditions somewhat below stall are assumed.
The relation Eq. (4.1.19) is the basis for the broken-line
curves showing vortex noise in Figs. 4.1.4-4.1.9. Hubbard
estimates these tentative results as being correct within
t 10 db for conditions below stall, and points out that
the vortex noise may increase by 10 db when the propeller
is operated under stalled conditions.

The uncertainty in the present evaluation of vortex
noise may be explained in part by recalling that the
coefficient in Eq. (4.1.12) is a function of the Reynolds
number. Evaluations currently available were made at
Reynolds numbers much smaller than those found in pro-
peller applications. Experiments at high Reynolds numbers
necessarily bring in rotational noise and are therefore
more difficult in that the rotational and vortex noise
contributions must be separated. Moreover, propeller
blades may operate at Reynolds numbers greatly exceeding
105, the value at which laminar flow in the boundary
layer is replaced by turbulent flow. Completely turbulent
flow generates broad-band noise through mechanisms other
than vortex shedding, and the vortex noise analysis does
not apply rigorously.
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The Spectrum of Vortex Noise. The rotating-rod
experiments of Stowell and Deming L_91/ and others
give spectra in which most of the noise energy is lo-
cated in the frequency range given by the Strouhal for-
mula, Eq. (4.1.1 3 ). (The formula gives a range of
values rather than a single value in the case of a
rotating rod, since the section velocity varies con-
tinuously from the hub to the tip.) Noise energy is
observed over the entire audible range, however, as
illustrated by oscillograms given in Ref. 1.5. There
is some evidence of peaks in the spectrum at harmonics
of the Strouhal frequencies. The spectral distribution
of the noise needs further investigation.

Practical Importance of Vortex Noise. It appears,
that vortex noise never constitutes a significant portion
of the distant sound produced by heavily loaded propellers,
operating at tip speeds of 900 ft/sec or more. Thus, it
is not necessary to consider vortex noise in connection
with takeoff operation of transport airplanes, and it is
unlikely that vortex noise is important even in the sound
produced by transports under cruising conditions.

The intensity of rotational noise is much more
sensitive to tip speed and to blade loading (angle of
attack) than that of vortex noise. Consequently, it is
always possible, by reducing the tip speed and possibly
the angle of attack, to reach a condition where the
propeller sound consists largely of vortex noise rather
than rotational noise. Vortex noise thus becomes the
limiting factor when an attempt is made to reduce pro-
peller noise by reducing the tip speed and increasing the
number of blades. This point was discussed in an earlier
paragraph.

An Example of Calculating Propeller Noise. Given
the following propeller data, it is desired to estimate

(a) the SPL near the ground (hard surface)
at 500 ft distance;

(b) the SPL at that point in the 600-1200 cps
band: Four propeller blades; tip speed 900 ft/sec
(approximately Mach 0.9); 2000 horsepower input.
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From Fig. 4.1.5, the power level is 112 + 55 =
167 db. The direction-averaged SPL at 500 ft distance,
in free space, would be the power level less 10 log
[4r(500)2j, which gives 102 db. Near the hard ground,
pressure doubling raises the SPL by 6 db to give 108 db,
still on a direction-averaged basis. If the typical
directional distribution of Fig. 4.1.15 is assumed, the
SPL in the propeller plane (900) is 1 db less than the
direction-average value, which yields 107 db. This is
answer (a).

The given conditions resemble takeoff operation
for a large airplane. Therefore the spectral distribu-
tion in Fig. 4.1.16 should apply. According to this
figure, the SPL in the 600-1200 cps band is approximately
9 db below the overall SPL, which gives 99 db as answer
(b).

Sometimes it is necessary to estimate sound pressure
levels external to a test cell, with the propeller operat-
ing inside. For a cell which has no sound-absorbing
treatment, and which has openings looking out in a hori-
zontal direction front and rear, a first approximation
to low-frequency sound levels is obtained by making a
calculation as given above, and using the space-averaged
value, since the cell disturbs the normal directionality
of the propeller. For higher frequencies, the cell
openings must be assigned the directionality of a stack
opening, and in general a proper allowance must be
introduced for sound-absorbing treatment. These topics
are reserved for later chapters.

The calculations above could also have been started
by reference to the empirical propeller-noise chart,
Fig. 4.1.14, which is approximately correct for large
propellers of two to four blades. This chart gives a
power level of 167.5 db, from which about 2 db should be
subtracted to correct from three to four blades, giving
a power level of approximately 166 db. All results would
then be less by one db than those obtained above.
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4.2 Noise from Aircraft Reciprocating Engines

Reciprocating engine noise has been studied less
extensively than propeller noise, because the maximum
noise levels produced by propeller-driven aircraft, under
full-throttle conditions, are usually attributable to
the propeller. The tentative generalizations given be-
low concerning engine noise are made on the basis of a
few observations (Refs. 1.13 and 1.7); also a ground
airplane test; and unpublished results of tests on an
800 horsepower engine in a dynamometer test cell).

1. The noise developed by a reciprocating engine
is produced almost exclusively by the exhaust,
with possible exceptions in cases where
unusually effective mufflers are used.

2. The noise energy of the lowest-frequency
exhaust component of a reciprocating engine
is approximately proportional to the total
power developed. Quantitatively, the power
level of this exhaust component for an engine
without exhaust mufflers is not less than

Power level of lowest frequency component =

122 + 10 loglO (horsepower).

(4.2.1)

On theoretical grounds, the horsepower value
used in Eq. (4.2.1) should include mechanical
losses in the engine. However, these are
usually not known. In cases where the mechan-
ical losses are large, they must be included.

3. The lowest-frequency exhaust component of
importance usually has a frequency equal to the
number of exhaust discharges per second (two
discharges occurring simultaneously are counted
as one). This frequency is usually below 300 cps.
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4. Usually the spectral distribution of noise
energy is approximately as follows: The power
level in the octave band containing the lowest-
frequency exhaust component lies about 3 db
below the overall power level. The levels in
octave bands above this one decrease at about
3.db per octave of increasing frequency. No
significant noise is produced in octave bands
below the one containing the lowest-frequency
exhaust component. These conditions may be
typical of engines operated at cruising condi-
tions, and of small engines (150 horsepower
and less).

5. In the case of an engine of 800 horsepower
operated at full throttle, a uniform octave-
band spectrum has been observed (equal power
levels in the octave band containing the lowest-
frequency exhaust component and all higher
octave bands). This may be typical of larger
engines under full-power conditions. In this
case the overall power level is about 8 db
larger than that of the lowest frequency
exhaust component.

6. Directional effects are much smaller for engine
noise than for prgopeller noise. The total
variation in SPL with direction is about 6 db
for the lower-frequency components of engine
noise. This statement probably holds for high
frequencies also in the case of an isolated
engine, but no detailed measurements for high
frequencies are available. In the case of an
engine mounted on an airplane, the high fre-
quency directivity will be affected by shadow-
ing produced by the airplane structure.

Simple relations for the overall power level of an
engine without mufflers are obtained by combining state-
ments 2, 4, and 5. For the case of small engines (150
horsepower or less), or engines operated under cruising
conditions, the relation is

Overall power level - 125 + 10 lOg1 0 (horsepower).

(4.2.2)
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For the case of a large engine operated at full load,
the relation if

Overall power level = 130 + 10 log1 0 (horsepower).

(4.2.3)

For example, according to Eq. (4.2.2), the overall
power level is 152 db for engines delivering 500 horse-
power under cruising conditions. According to Eq. (4.2.3),
the overall power level is 160 db for an engine deliver-
ing 1000 horsepower at full load.

4.3 Total External Noise of Aircraft with Reciprocating
Engines

According to Secs. 4.1 and 4.2, the overall noise
level of a propeller increases by approximately 5.5 db per
horsepower doubling (plus 2.7 db or more for each in-
crease of 100 ft/sec in tip speed), whereas the overall
noise level of an engine increases at approximately 3 db
per horsepower doubling. It follows from these principles
that the predominant noise source in a propeller-driven
aircraft with very large engine power will be the pro-
peller, but that engine noise will predominate when the
power is low.

This expectation ap ears to be borne out in the
results of a survey 3._1 of take-off noise level of vari-
ous airplanes ranging from 65 to 5800 horsepower. In
this survey the microphone was located in the propeller
plane at a distance of 500 ft from the center of the
runway. At this microphone position the sound received
from both engine and propeller has approximately the
space-average value, so that directional effects may be
neglected. It is found that the observed sound levels
for aircraft with more than 150 horsepower agree with
values predicted from the empirical propeller chart,
Fig. 4.1.14, to the accuracy of the chart. For airplanes
of 150 horsepower and less, the overall noise levels
exceed those predicted from the propeller chart, but are
in approximate agreement with levels for engine noise
as given by Eq. (4.2.2). There are, however, other take-
off noise data 1.y7/ for aircraft with less than 200 horse-
power which are in agreement with propeller noise figures
rather than with estimated noise figures. The reason
for the discrepancy is not known.
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A convenient approximate expression for the over-
all power level of various aircraft under take-off condi-
tions has been deduced from the data of Ref. 3.1. This
relation is

verall power hTotal take-off(level take-off 121 + 12 logorsepower o

1 f) aircraft
(4.3.1)

It happens that under the particular conditions found in
take-off it is not necessary to consider propeller tip
speed explicitly. Since the tip speed is not considered
in Eq. (4.3.1), this relation cannot be applied to operat-
ing conditions differing materially from takeoff.

The broken line drawn across the empirical propeller
noise chart, Fig. 4.1.14, divides the chart approximately
into a region in which the propeller is the major noise
source for an entire aircraft (upper right-hand portion)
and a region in which the engine is the major noise source
(lower left-hand portion). This line is constructed by
computing, for various values of total horsepower, the tip
speed at which the overall propeller noise power level
equals the overall engine noise power level given by
Eq. (4.2.2) is assumed. Operating data for small single-
engine aircraft often fall in the region in which engine
noise is important (lower left). All data used in deriv-
ing this dividing line represent average trends from which
results for a particular aircraft may differ by as much as
5 db as regards either engine noise or propeller noise.
Therefore, the line as drawn on the chart will not indicate
accurately under what conditions propeller noise is dominant
in a particular aircraft. Also, the results are averages
for reciprocating engine aircraft as commercially produced
up to 1952, and do not apply to specially constructed units
in which noise control measures are incorporated. It has
been shown that overall aircraft noise can be reduced
significantly by use of propellers with an increased number
of blades and by use of exhaust mufflers 1._6/.

FIGURE 4.3.1
Directional distribution of SPL for certain discrete-
frequency components of airplane noise. Measurements
50 ft from hub; ground test at cruising power. Two-
blade propeller; 1940 rpm; direct drive; 97 horsepower;
blunt tips, speed 646 ft/sec. (From Fig. 27a of Ref.l.7).
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The preceding remarks on total aircraft noise
refer to the space average of sound output. This con-
cept is inherent in the definition of power level. In
general, actual observation made in the propeller plane
will agree approximately with space-average results.
The directivity patterns of engine and propeller must be
considered in predicting noise levels observed in other
directions. A typical situation is illustrated in
Fig. 4.3.1, which shows the variation with azimuth angle
of measured overall sound level and/or the levels of
selected propeller and engine noise components for a
particular small airplane. These results were obtained
by operating the airplane at cruising power on the ground
and by placing the microphone in various locations 50 ft
from the propeller hub, and approximately at the hub
level.

The tentative conclusions regarding external noise
or reciprocating-engine aircraft are summarized below.

1. For large aircraft, the overall PWL for
either cruising or take-off conditions is
approximately equal to the overall PWL for
propeller noise which may be estimated by
the methods given at the end of Sec. 4.1.

2. For aircraft of 150 horsepower or less, it
appears that the overall PWL under cruising
or takeoff conditions is approximately that
given for the engine by Eq. (4.2.2).

3. The SPL in the propeller plane is approxi-
mately that which would be produced by a
non-directional source having the stated
overall PWL.

4. The overall PWL for various aircraft
under takeoff conditions is given approxi-
mately by Eq. (4.3.1).

5. The observed noise for positions directly
ahead of or directly behind, the aircraft
is approximately the engine noise alone
having a PWL given by Eq. (4.2.2) or (4.2.3).
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6. The observed SPL for positions from 200 to
300 behind the propeller plane has the greatest
preponderance of propeller components. An
approximate indication of the overall SPL for
this region may be obtained, for either cruise
or takeoff conditions by adding 5 db to the
value obtained by using the overall propeller
PWL (Sec. 4.1) and proceeding as for a non-
directional source.
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6.3a Noise-Generating Mechanisms in Axial-Flow Compressors

An axial-flow compressor consists of a sequence of
multiple-blade propellers (rotors) operating within a duct.
Several stators, which are essentially non-rotating pro-
pellers, are placed between successive rotors, and possibly
at the ends of the array. Since the axial-flow compressor
is made up of propellers, the mechanisms of noise genera-
tion are very similar to those for aircraft propellers as
discussed in the revised Sec. 4.1. A familiarity with parts
of that section will be assumed in the present discussion.

The theory of propeller noise generation predicts
that the periodic sound component (i.e. the rotational noise)
has zero amplitude on the propeller axis. This is because
any point on the axis is, at all times, a fixed distance
from the steady rotating pressure pattern associated with
any one of the blades, and hence experiences no time-varying
pressure, or sound. If this concept is extended to the
axial-flow compressor, it appears that there should be no
propagation of sound down the duct axis. A theoretical
calculation confirms that no sound energy from rotational
noise will be propagated down the duct, provided that the
rotors, the stators, and the duct all have perfect circular
symmetry. There will be, however, a large-amplitude pres-
sure disturbance in the plane of each rotor having the
characteristics of an array of dipoles, one for each rotor
vane. This disturbance does not excite plane waves of sound
in the duct, but does excite high-order modes, the amplitude
of which falls to practically negligible values within one
duct diameter on either side of the rotor. The theory of
the sound-pressure distribution in higher modes has been
worked out in detail.

In addition to periodic noise, the compressor rotor
will generate nonperiodic vortex noise in the manner of an
airplane propeller. No phase cancellation of vortex noise
is possible, because of its nonperiodic nature, and the
vortex noise is therefore radiated down the duct. As indi-
cated in Sec. 4.1, the sound power radiated as vortex noia
is proportional to the projected blade area in the direction
of motion, and to the sixth power of the blade speed.

Where the duct, the stators, or the rotors, do not
have perfect axial symmetry, rotational noise will be propa-
gated down the duct as airborne sound. Since this effect
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depends upon departures from the nominal symmetrical de-
sign, it is difficult to make any general predictions.
However, case vibrations, as discussed below, are important
for usual compressor design; asymmetry effects are of secon-
dary importance compared to these.

The preceding considerations apply to sound within
the duct which is completely airborne. In addition,
structure-borne sound is important. The pressure distur-
bances around the rotor blade tips apply oscillating dipole
forces to the compressor case immediately about the rotors.
The effect is similar to that of vibrational forces de-
veloped on an airplane fuselage in the vicinity of the
propeller. The case vibration will cause the rotational
noise to propagate along the duct walls. If vibration breaks
are installed near the compressor, this has little effect on
noise levels at a distance down the duct. In the absence of
vibration breaks, this structure-borne sound may be the
major source of noise within the duct at a distance from the
compressor.

The vibration of the case in the immediate vicinity
of the rotors is responsible for most of the external noise
from the compressor. This external noise is largely periodic.
The noise chart for axial-flow compressors, Fig. 6.7, refers
to the generation of external noise by the compressor, and not
to the generation of noise within the duct. The effective
power levels given in the chart were obtained by finding the
total power delivered externally, on the basis of a multiple-
point survey.* Since the external sound is largely rotational
noise, it is predicted theoretically that the level should
increase by 5 to 6 db per horsepower doubling, in agreement
with Fig. 6.5. It is difficult to calculate the absolute
level of the external sound theoretically because this in-
volves the vibrations of elastic plates (the case) under
complicated boundary and excitation conditions. However,
under simplifying assumptions, some theoretical results may

* Note that in the case of axial-flow compressors, the power
levels as given in Sec. 6.3 refer to the noise external to
the compressor. On the other hand, the power levels for
centrifugal compressors refer to the noise inside the com-
pressor ducts, so that the transmission loss of the duct
walls must be taken into account to obtain the external
noise.
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be obtained. They are not intended to replace the empirical
results of Sec. 6.3 but to give further quantitative insight
into the problem.

It is possible to identify three important mechanisms
that contribute to the intensity of the blade rotation noise:

(1) Blade rotation itself, as in the case of a
propeller in free space.

(2) Aerodynamic interaction of the blades and
stators.

(3) Fluid flow between the blade tips and the
compressor case.

Only the mechanism associated with (1) has been evaluated
theoretically; preliminary calculations indicate that (2)
and (3) are of secondary importance. In order to evaluate
(1), it has been assumed that the distribution of the
thrust force along the blades is independent of the dis-
tance along the blades. Further, it has been assumed that
the blade width and thickness is very small, so that the
thrust force is concentrated on blade lines and so that
volume change effects of the air as the blade passes may
be neglected. Then, the mean pressure in the plane of
rotation is found to be:

1/2
P AP [5 + 1 In 5I (6.3a.1)

Pl =•-• "4 - 1

where p1 is the rms pressure for the fundamental frequency

AP is the pressure rise across the plane of rotation

5 is the ratio of the inside compressor radius R0,
to the hub radius Rh.

The fundamental frequency is given by

f N RPM) , cps (6.3a.2)
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where N is the number of blades. Harmonics of the funda-
mental frequency are generated also. The pressure for the
harmonics depends upon the assumed force versus time
character at each element of the blade disc; for the
assumption used in Eq. (6.3a.l), equal magnitudes are pre-
dicted for all the harmonics in the plane of rotation.
(Note that this result does not agree with the empirical
information given in Sec. 6.3, in which the second harmonic
is estimated to be the frequency of maximum radiation.)

The theoretical results above may be used to predict
the excitation of the compressor case, and thus the sound
radiated from the case. As an example, consider the
following problem:

AP = 60" H2 0 per stage

Number of stages = 3

Distance between stages = 3"

Ro= 13"

Rh= 60

RPM = 7200

HP = 1350

Then, for each stage,

P1 = 1.2 x 104 dynes/cm2

or SPL = 155 db re .0002 dyne/cm2

at f, = 7200 cps

The transmission loss (TL) of the compressor case is a
measure of the radiation for a given pressure excitation.
Assume the case is of cylindrical construction and about
1/4" thick. Then the TL is about 30 db. The resulting
pressure outside the case is thus about 125 db per stage.
According to the assumed thrust distribution, this value
of SPL is valid for all the harmonicsas well as the funda-
mental. All three stages, however, are operating in
definite phase relation. Thus conservative practice dic-
tates that the combined sound pressure for the three
stages Just outside the case is the sum of the sound
pressures from each stage, giving SPL = 125 db + 20 log 3
= 135 db.
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It is instructive to compare the above estimate with
the values predicted by the empirical relations given in
Sec. 6.3. Figure 6.7 yields a PWL value of 135 db for the
frequency of maximum output (the second harmonic). The
relevant area for converting the PWL to SPL is not accurately
known, but may be assumed to vary between about 2 sq ft
(corresponding to the cross-sectional area between the hub
and the case) and about 5 sq ft (corresponding to the surface
area of the case in the vicinity of the blades). Thus the
resulting SPL is between 128 db and 132 db, in reasoriable
agreement with the value calculated above from Eq. (6.3a.1).

Section 6.3 also indicates a method. for estimating
the spectrum below the fundamental frequency. Using the.
information given in Sec. 4.1 on vortex noise*, the spec-
trum below the fundamental may be calculated. The result
is also in reasonable agreement with the empirical result
from Sec. 6.3.

* In order to use the information, account has to
be taken of the different drag coefficients and
Reynolds' number for the present example and the
experiments quoted therein.
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6.5 Noise from Ventilating Fans and Ventilation Systems

Experimentally Measured Power Levels and Spectra. The
acoustic power level of a ventilating fan in a duct may be
determined from the average sound pressure across the duct
passage. The measurements must be made at locations at
least several fan diameters away from the fan and the sound
pressure must be the result of acoustic energy traveling
away from the source, i.e., the reflection of the sound
back from the more distant portions of the duct should be
negligible. The power level for a fan in open air, or for
the back side of a fan which is connected to a duct on one
side only, can be determined from measurements of the sound
pressure at several points on a surface in space which
surrounds the source. This survey must be performed in
the absence of reflecting objects. The basic principles
of both of these methods are discussed. in Chapter 3.

The first method, which relates to a fan operating in
a duct, may be applied successfully when the duct is very
long and has sufficient sound attenuation to prevent re-
flections at all frequencies which are of importance, or
when the duct is connected to a non-reflective termination
specially designed for use in laboratory measurements of
fan noise. A laboratory system having a non-reflective
termination, as described by Beranek, Reynolds and Wilson
5.1/, is shown in Fig. 6.5.1. A recommended modification
ofthis system, for future measurements is given in the
reference.

Measurements performed with this laboratory system
on fans of both vaneaxial and centrifugal types, with in-
put power up to six horsepower, have led to the following
conclusions 5.1, 5.2, 5.3/.

1. The spectrum for centrifugal fans falls off
rapidly with increasing frequency. The de-
crease of power level between successive
octave bands is 5 db.

2. The spectrum for vaneaxial fans is nearly
uniform for octave bands 20-75 cps to 1200-
2400 cps, inclusive, but decreases in the
higher bands.
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3. The spectra on inlet and outlet sides of a
fan are similar, except that a narrow peak
protruding above the broad-band noise by
6 db or less at the blade fundamental fre-
quency, may be observed on the inlet side,
but is scarcely observable in the exhaust.

4, The spectra and the power level are not
significantly changed by varying the back
pressure on the fan.

5. The exhaust spectrum is nearly independent
of speed below the rated maximum.

6. The open inlet to the fan has very nearly
the same directional properties as a piston
of the same size.

7. Reversing a vaneaxial fan has no significant
effect on the sound output.

The summary spectra resulting from the study are shown in
Fig. 6.5.2 where the ordinate indicates octave band power
level relative to the overall power level. The shaded
zones show the latitude within which variations may be
expected according to the individual fan design and operat-
ing speed.

FIGURE 6.5.1
Laboratory system for measuring noise delivered
to a duct by one side of a ventilating fan.

A - fan
B - conical adapter
C - canvas vibration-isolation coupling
D - straightening vanes
E - measuring section
F - manometer location
G - microphone opening
H - adapter
I - exponential horn section
J - acoustic termination
K - three acoustic wedges, each 8" x 24"

base, 6 lb/ft3 Fiberglas
L - Fiberglas lining, 6 lb/ft 3 , 1" thick
M - adjustable back-pressure panels 5.
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It has been found that the overall acoustic power
level is determined by the mechanical power delivered to
the fan. The relationship given in Ref. 5.2 is based on
measurements made on two centrifugal fans. In order to
cover a range of input mechanical power, the fan speed
was varied. It was found that the PWL varied as 20 log HP
when the speed of a single fan was decreased below the
rated maximum value. Since the horsepower depends on the
5/2 power of the angular velocity of the fan in the range
near the rated load, the acoustic PWL varies as 50 log rpm.
However, when the PWL's of a series of different fans hav-
ing different maximum rated horsepower are compared, a
different dependence of PWL on input mechanical power is
observed. In this case, the PWL for fans operating at
their rated horsepower varies as 10 log HP. That is, the
PWL increases by only 3 db per doubling of horsepower in
the second case but as 6 db per horsepower doubling in
the first case.

From Ref. 5.3, the overall PWL, for different fans

operating near their maximum rated horsepower, is

PWL = 100 + 10 log1 o HP db. (6.5.1)

For the case where the speed of a single fan is varied,
Eq. (7) of Ref. 5.1 is still valid. However, the correc-
tions and limitations to the data of Ref. 5.2, as discussed
in Ref. 5.3 should be consulted. In particular, the con-
stant 120.4 db should be 114 db.

It should be noted that a reduction in noise can be
obtained by using a fan having a maximum rated input power
larger than necessary for the job to be done and then
operating it at lower than rated power. The power level
delivered to the exhaust duct alone or the input duct alone
is approximately 3 db less than the total PWL given by
Eq. (6.5.1)

Ventilation System Noise Level in a Room. When the
ventilating fan communicates with a room through a section
of duct, the duct opening in the room becomes a source of
sound which, in any given octave band, has the same power
level as one side of the fan, less the attenuation intro-
duced by the duct in that band. The methods for finding
the attenuation of sound in an acoustically treated duct
are discussed in Sec. 12.2. Thus, when the properties of
the fan and of the duct are known, the sound pressure level
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in the room may be found by the methods which are
employed in any case where a sound source of known proper-
ties is present. A method of calculating the level in
the room is discussed in Sec. 3.5. The quantities which
enter into the calculation are:

1. the power level of the source in the desired
frequency band

2. the directivity factor, Q, of the source in
this frequency band, in the direction of the
observer

3. the distance, r (ft) between the observer in

the room and the source

4. the room constant, R in sq ft.

The room constant R is equal to S R/(l- U-) where S
is the area of the room boundaries in sq ft and 0C• is the
average value of the absorption coefficient*. Ordinarily,
the chamber absorption coefficient is used. (Sec. 12.1)

The accompanying charts facilitate evaluation of
some of these quantities 5.__/. The effective directivity
factor for the source at low frequencies is affected by
the location at which the duct enters the room. Four
cases may be distinguished conveniently, as shown in
Fig. 6.5.3. A duct which opens in the center of the room
volume (Case A) is assumed to radiate nondirectionally,
as into open space, at low frequencies. This corresponds
to a low-frequency value of 1.0 for Q. At the other
extreme, radiation from an opening in the corner (Case D)
is restricted to one octant in space, with a minimum value
of 8 for Q. At sufficiently high frequencies the directi-
vity in all cases approaches that of a piston of radius a,
but in practice the directivity factot on the axis rarely
rises above 50. The axial directivity factor for each
of the four cases is plotted as a function of a dimension-
less frequency parameter in Fig. 6.5.4. The quantity a
is equal to the radius of a circular duct opening, or to
L/ir•-for a square opening of width L. For a rectangular

* This quantity is called Orin Chapter 3.
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opening of widths Lx, Ly, the value of Q lies between the
values for the corresponding square openings. The large
values of Q for high frequencies represent beaming of the
sound in the axial direction, perpendicular to the plane
of the opening. The off-axis values of Q are much smaller
at high frequencies; for example, if the opening is in the
center of a wall, the value of Q for the direction 450
from the axis is approximately 2 at all frequencies.

In some cases an accurate calculation is not required,
or information regarding the absorption coefficient of the
walls may be insufficient for accurate calculation. In
these cases, an approximate value of the room constant, R,
may be obtained by characterizing the room as "live"
( 6L= 0.05) or "dead" ( a = 0.4) or by some intermediate
designation, and by using the value of Orthus selected
with the known wall area. If the room shape is specified.,
the wall area is uniquely related to the volume; for
example, in a cubical enclosure the wall area is six times
the two-thirds power of the volume. On this basis, the
chart of Fig. 6.5.5 has been constructed to give values
of the room constant as a function of room volume for four
values of the average absorption coefficient which cover
the range "dead" to "live". While the chart is derived
for a cubical enclosure, it may be used for ordinary rooms,
but is not applicable to extreme cases such as that of
a long corridor.

Grille Noise. In calculating the noise produced in
a room by a ventilating system, it is necessary to consider
not only noise generated directly by the fan, but air-flow
noise produced at the grille opening into the room. No
extensive measurements of grille noise are available. The
following tentative relations, which indicate how the PWL
of noise from a grille is expected to vary with flow
velocity and with pressure drop across the grille, are given
in the Heating Ventilating Air Conditioning Guide L.4

FIGURE 6.5.2

Typical octave band spectra for vaneaxial and
centrifugal fans. Shaded areas show the expected
spread as a result of variations in details of
fan and blade design and speed 5.1, 5.3/.
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Figure 6.5.3

Illustration of four positions for duct opening in a
room, for which the directivity factor is given in
Fig. 6.5.4. Ref. 5.1.
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PWL change in db = 50 logl 0 (V2/VI) (6.5.2)

V1 and V2 are flow velocities on the two sides of the grille

PWL change in db = 25 log10  (PjPI) (6.5.3)

P1 and P2 are the pressures on the two sides of the grille.
Also, on the basis of very limited data, a typical value of
SPL at the grille is 48 db for a pressure drop of 0.1 in.
water. If this figure is accepted for use with Eq. (6.5.3),
the power level for one side of the grille is

PWL = 73 + 10 loglo A + loglo P (6.5.4)

where A is the grille area in sq ft and P is the pressure
drop in inches of water. In view of the limited evidence
on which this relation is based, it is preferable to work
from experimental measurements on a grille of type similar
to the one in question, rather than to use the above equa-
tions, when this is possible.

Available data on grille noise give no detailed
information on the spectrum of the noise. Until adequate
data are available, it is suggested that Curve D of Fig.6.11
for noise due to air flow through a valve be used in estimat-
ing the grille noise spectrum.

Example of Estimating Ventilation System Noise in a
Room. The application of these principles is now illlus-
tr-ated by numerical example. Suppose that it is desired
to estimate the SPL in octave bands, for a location of
10 ft in front of the grille opening, under the conditions
which are listed below. Assuming it has been established
that the air flow noise at the grille will not exceed
allowable limits, we now estimate noise due directly to
the fan.

Room Data: Volume 105 cu ft. Medium-live in the
lower two octave bands, and medium-dead in the higher fre-
quency bands. The corresponding values of the room con-
stant, from Fig. 6.5.5, are 2300 sq ft for the lower two
bands and 4400 sq ft for higher bands.

Connecting Duct: Length of duct, 40 ft. The total
attenuation of the duct, when split into several parallel
sections each with individual acoustical lining, is assumed
to be as shown in Table 6.5.1. The grille opening is near
the center of a room wall, and is 4 ft square.
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Fan: Centrifugal fan operated at its rated power of
5 HP.P--rom Eq. (6.5.1), the total PWL is estimated as
107 db, and the PWL affecting the duct on one side of the
fan only is then 104.

From Fig. 6.5.2, which gives the limits of the spec-
trum to be expected, we derive the effective power levels
in the individual bands from the overall PWL of 104 db.
The individual band power levels are shown in Table 6.5.1.

The axial directivity values are obtained from Fig.
6.5.4 for an opening 4 ft square, at the frequencies cor-
responding to the centers of the octave bands. These
directivity (Q) values are also listed in the table.

The values of relative SPL at a distance of 10 ft
from the opening are found from Figs. 6.3.3, 6.3.4, and
6.3.5 or from Eq. (3.10), for each band, by use of the
appropriate room constant (R) and directivity factor (Q)
already determined. These relative SPL values would be
numerically equal to the SPL figures at the point of
observation if the grille opening acted as a source whose
PWL was zero db in each band.

Actual values of SPL in each band, at the desired
point 10 ft in front of the grille, are obtained by sub-
tracting the duct loss from the sum of the band PWL of the
fan and the relative SPL. These actual values of SPL are
listed in the final column of Table 6.5.1.

The resulting SPL spectrum falls off very rapidly
with increasing frequency in the lowest few octave bands.
This effect is often found in ventilation noise problems.
In the present example, this is the combined result of
the slope of the centrifugal fan spectrum and the extreme
slope of the duct attenuation function in the lower fre-
quency bands.

FIGURE 6.5.4

The directivity factor on the axis (perpendicular
to the plane of the opening) for the four duct
opening locations of Fig. 6.5.3. Speed of sound,
c; A, wavelength; f, frequency in cps; a, radius
of circular opening or (width /V-r-' for a square
opening 5=._
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Usually, the designer is given the characteristics
of the fan and the allowable sound pressure levels in the
room, and the problem becomes one of finding the attenua-
tion that must be provided in the duct system so that the
allowable levels will not be exceeded. The methods for
obtaining this attenuation are considered in Chap. 12.
In many cases, an elaborate treatment must be used if the
sound pressure level is to be substantially reduced in the
low-frequency bands.

Relation to Other Air Flow Devices as Noise Sources.
The same basic phenomena are responsible for noise genera-
tion in a wide variety of fluid flow devices. These pheno-
mena include the mechanisms by which energy of flow is
converted into heat and into random acoustical energy in
the process of turbulence, and the mechanisms by which the
air flow can be modulated to give an acoustic signal hav-
ing a periodic waveform, as in a fan, propeller, turbine,
or other device with rotating blades. An understanding
of these phenomena enables the engineer to utilize prin-
ciples of noise reduction in the basic design of ventila-
tion equipment.

FIGURE 6.5.5

The room constant as a function of room volume,
for average absorption coefficient categories
"live" to "dead". This assumes that the rela-
tion between wall area and volume is approximately
that for a cubical room, but may be applied in
usual cases where the room shape is not extreme.5%/
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TABLE 6.5.1

CALCULATION OF SOUND PRESSURE LEVELS PRODUCED BY A VENTILATING SYSTEM

Octave Source Q R Relative Duct Resulting
Direc-

Band PWL in tivity Room SPL-lO' Loss Band SPL,
Factor in Front db, 1O'
on Axis of Open- in Front

Band of Open- Factor ing of
cps db ing (Eq 3.10) db Opening

20-75 102 2 2300 -25 db 7 70

75-150 98 3 2300 -24 12 62

150-300 93 9 4400 -21 45 27

300-600 88 40 4400 -15 50 23

600-1200 82 50 4400 -14 50 18

1200-2400 78 50 4400 -14 50 14

2400-4800 73 50 4400 -14 50 9

4800-10000 68 50 4400 -14 50 4
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11.2 Insulation of Airborne Sound by Rigid Partitions

General Remarks. Since our ear is an airborne
sound receiver, the best insulation from noise radiated
into the air is to interrupt the direct sound path by a
rigid partition. This then forces the sound to become
structure-borne sound for some part of the way.

This partition may surround the source or the
receiver in all directions (Fig. ll.2.1a and lb) or it
may separate a large room into two rooms (Fig. 11.2.2).
In the second case, the area of the partition wall S is
only a part of the area S1 of the source room and the
area S2 of the receiving room. By multiplying Sl and
S2 by the corresponding mean absorption coefficients of
the source room and the receiver-room, we obtain the so-
called absorption powers A1 and A2 . If we now consider
as given the power of the source Po we may ask for the
mean sound pressure P2 in the receiver room, or for the
corresponding energy density E2 (energy /unit volume)
which is proportional to the square of P2.

We split the problem into the following steps. Due
to the source of power Po, the energy density E1 in the
source room is

E 1 = 4P/cA1  (11.2.1)

where c is the velocity of sound in air. (These and the
following formulae are based on the assumption that the
sound is distributed randomly over all regions and direc-
tions in the room). The energy density E1 determines the
power P1 striking the wall under test

P1 = cSEI/4 = PoS/AI " (11.2.2)

Notice that P1 can and usually will be much greater than
Po, because the reflected energy in the souce room is
included in Pl. As a result of the power P1 being incident
on the wall, there is a transmitted power P 2 . This
process is influenced only by the construction of the wall
and is characterized by the transmission coefficient
defined by
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(A) (B)
FIGURE 11.2.1

Two possible ways of shielding a receiver R from a sound source
S in the same room. In (A) the source is enclosed by a rigid
partition while in (B), the receiving space is enclosed.

x
R

FIGURE 11.2.2

A more common situation where the source and receiver are
separated by a partition dividing the space in two.
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P 2 =TPI =t cSEl/4 = SPc/AI

(11.2.3)

Finally, P2 results in an energy density E2 in the re-
ceiving room for which we require

E 4P2 4P2 == 2 A -2 = (S/A 2) E1 = 4SrP/cAIA2

(11.2.4)

The equation relating E and P0 demonstrates the exis-
tence of reciprocity; i states that if you hear a
neighbor, he hears you just as well.

But this general law only regards the physical
part of the problem. When the physiological part is
introduced, reciprocity may not hold. Suppose a mask-
ing noise exists in one room. Then the sound of speech
transmitted from a neighboring (quiet) room may be
masked completely; but in the quiet room, the noise level
is much lower (corresponding to the reduction of the
noise by the wall) and speech which is louder than the
noise in the source room will after transmission through
the wall still be heard very clearly in the neighboring
rooms.

The principle of reciprocity also may not be
applicable from the physical point of view if we do not
regard the power of the sound source P0 as the given
quantity but the energy density E1 in the source room.
This is the case in the usual measuring techniques for
air-borne sound insulation where we compare E1 and E2
by measuring the sound pressure at several points in both
rooms. In this case we get from Eq. (11.2.4)

E = E2 AIEIS . (11.2.5)

This means that in order to find C we have not only to
compare E1 and E2 but we have to measure S and A2 . Here
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we get different ratios of energy density depending on
which we choose to call the source and the receiving
room.

The absorption power A2 may be evaluated from the
measurement of the reverberation time T 2 in the receiving
room using Sabine's formula

A2 = 0.05 VIT 2  (11.2.6)

where A2 and V2 are the room absorption and room volume
in units of sq ft and cu ft respectively.

Since we are usually trying to minimize the amount
of sound energy transmitted to another room, we are
interested in values of T as small as possible. For char-
acterizing the quality of sound insulation, it is more
useful to define a reciprocal quantity and, since this
quantity varies between 10 and l10, we define a logar-
ithmic measure called the Transmission Loss (TL) as

TL = 10 log i/r . (11.2.7)

Calculated in this way, the TL is expressed in decibels*.
At first it was assumed that this logarithmic scale would
also correspond to our subjective valuation of sound
intensity which we call loudness. Although this is not
actually the case, we may say to a first approximation,
that each increment of 9 db in TL is equivalent to halv-
ing the loudness.

* This quantity is internationally used, but is
called "transmission loss" in America only.
For a European Code, the British proposed to call
it reduction factor "R". In Germany the quantity
is called "Schalldammzahl"and the letter K is used.
Kosten (Netherlands) proposed the name "insulation"
and the symbol i.
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In the same way, the quantity

NR = 10 log E1 /E 2 db (11.2.8)

may be called the noise reduction (NR). With modern
measurement equipment this quantity can be measured
directly. Then Eq. (11.2.5) in the logarithmic form is

TL = NR + 10 log S/A 2 . (11.2.9)

The noise reduction to be expected with a given construc-
tion is

NR = TL - 10 log S/A 2 . (11.2.9a)

Note that the noise reduction depends on the area of the
separating wall. The smaller this area is, the lower the
transmission loss which will be tolerated.

The last remark is of special importance if the
partition consists of two parallel parts, for instance
a heavy wall and a door. It would be too expensive to
give the door the same TL as the wall. Since the door,
however, has only a small surface S2 compared to the
surface of the whole wall S1 + S2 the power entering the
second room, consisting here of two parts,

P 2 = cE1 (CISI + C2S2 )/4

(11.2.10)

will not be increased very much if C2 is higher than 1
The resulting loss of TL is given by

A (TL) = 10 log l(S1 +t$2S 2

(11.2.11)
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If we chose a value for this quantity, we might calcu-
late for the difference between both kinds of partitions

(TL) 2 -(TL) 1 =l0 log 'r/r= -10 log [106/1O(1+Sl/S 2 )-S 1/S 2 .

(11.2.12)

In Figure 11.2.3 this difference is plotted as a function
of the ratio S1/S2 for A = 1 and A = 3 db.

Now we may discuss the influence of the absorption
power in the receiving room. For measurements, we prefer
rooms with small absorption power. In this case the mea-
sured NR may be greater than the quantity we wish to
measure, the TL. In the case of a closed box installed
in a large, noisy room (Fig. ll.2.1b), all walls are trans-
mitting. Then A2 /S is equal to the mean absorption coeffi-
cient and therefore is always smaller than 1. In this
case the NR is smaller than the TL. If, for example, it
is possible to make OC2 = A2 /S = 0.5 (which is a rather
high value), we get from Eq. (ll.2.9a)

NR = TL - 3 db (11.2.13)

provided that these statistical formulae are valid for
absorption coefficients which are so high. If we have

0 2 = 0.25, we get

NR = TL - 6 db. (11.2.14)

We see that proper absorption in the receiving room
has some advantage. In particular, very small amounts
of absorption power must be avoided. If, in the limit,
the absorption power in the receiving room is equal to
the transmissivity of the surface S only, i.e., by A2 ='(S,
then we find from Eq. (11.2.5), E2 = El, or no transmis-
sion loss at all. This result may easily be understood
from the standpoint of energy balance. If the receiving
room and the wall itself present no energy losses, then
the wall may have an arbitrarily high TL; as steady-
state is reached, the energy density at both sides of
the common wall is the same. On the other hand, even
large amounts of absorbing material in the receiving room
cannot result in a high noise reduction. The most we can
expect is to get a free-field condition in which we have
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near the wall, instead of Eq. (12.2.4)

E 2 = PjcS =

or

NR = TL + 6 db . (11.2.15)

At a greater distance from the wall, the sound level
will fall off faster than the inverse square relation for
a free field. But excluding this very unusual (and expen-
sive)case, we may summarize the last results by saying:
some amount of absorbing power in the receiving room is
necessary. An absorption power equal to half the surface
of the separating wall may easily be reached, even in a
closed box, but further amounts of absorption never would
bring more than a 9 db increase in energy density ratio.

Therefore, we see that we only get high sound level
differences with constructions of high TL.

Since the TL depends on frequency, it is not realistic
to give only a mean value. Such a mean value can be at
best a very crude order of magnitude estimate of effective-
ness. In order to define such a mean value, one must first
decide on the limits of the frequency range, the quantity
we would like to average and the particular frequencies
at which one measures values to average. In the European
code of sound insulation measurements, the lowest frequency
is given by 100 cps and the highest by 3200 cps. Below
100 cps measuring becomes very uncertain and, fortunately,
the sensitivity of our ears is small. Above 3200 cps
insulation is so good, generally, that we seldom have
trouble. The frequency scale is logarithmic. This cor-
responds to the common use of octave steps or third-octave-
steps and may be justified by the similar distribution of
response for different frequencies on the basilar membrane
in the inner ear. The most difficult question is to say
what should be averaged. It is usual to average the trans-
mission loss and therefore in the following [TL] means
the TL averaged between 100 and 3200 cps over a logarithmic
scale.

But we must realize that this kind of averaging is
Justified only if the loudness or the rate of nervous im-
pulses per unit of time is proportional to the sound level.

WADC TR 52-204 81



We know that this assumption is not valid, but if we try
to take into account the loudness function, the average
TL will depend on the spectrum of the sound in the source
room. However, this is the situation we have if we want
to make conclusions concerning the subjective effect of
noise.

Therefore, it is better to consider the TL of a wall
as a set of values or a curve plotted over a logarithmic
frequency scale than to characterize it by a single value.

Single Wall

1. Relationship between the Transmission Coefficient and
the Transmission Impedance. In the following, we define
as a single wall each partition at which the normal velo-
city at the source side vI and the normal velocity at the
back side v2 (and the velocities of all points between
them) are equal. Thus

v = v 2 = v . (11.2.16)

This does not require that the wall is of homogeneous
construction. It may consist of different sheets, e.g.,
plaster, brick, plaster. It may even contain holes.
There are many inhomogeneous constructions which work as
a single partition, at least in the low and middle fre-
quency region. But there are also constructions, as, for
example, concrete poured between plates 6f cemented wood-
shavings and plastered at both sides which would be
called single walls from a standpoint of construction but
which acoustically show the behavior of multiple partitions
in the most of the frequency region. On the other hand,
even for a homogeneous plate there exists a frequency

FIGURE 11.2.3

The loss in TL as a result of building a wall
with an area Sl of a construction having [TL] 1
and an area S2 of a construction having [TL12 .
The ordinate gives the necessary TL of the
"insert" (i.e. door, window, etc.) when the
relative size of the wall and insert are known
and when the maximum tolerable loss of the total
TL has been chosen.
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limit, above which the assumption of Eq. (11.2.16)
loses its validity. This limit is reached when the thick-
ness becomes larger than a tenth of the wavelength for
the longitudinal wave in the wall. But in most cases of
practical interest, this happens above the frequency
region in which we are interested.

Assuming Eq. (11.2.16) is true, wenay characterize
the wall by its "transmission impedance" Z-r which we de-
fine as the ratio of the pressure difference between inner
and outer wall to the normal velocity

Z-r = (p1 - P 2 )/Vn . (11.217)

It is to be expected that this quantity is dependent on
frequency. This means that, in general, we have to
consider all the quantities in Eq. (11.2.17) as complex,
involving not only amplitudes but also phases. The
transmission impedance differs from the so-called wall
impedance

Zw = Pl/vn (11.2.18)

which characterizes the boundary condition for the source
room by the term p 2/vl. In the case of a wave radiated
at the angle Zi, which is the angle of incidence at the
source side, Zw is given by*

plvn = Pc/cos Zf. (11.2.19)

Practically, the difference between ZT and
Zw is much greater; in order to get the ab-
sorption coefficient using Zw, we have to
take into account also all losses which are
given by heat conduction and friction,
especially if the surface is porous. But for
the calculation of transmission, these effects
have no remarkable influence. Thus, if the
wall is covered with a layer of fiberglas,
we may split the whole problem into one of
absorption and one of transmission.

WADC TR 52-204 84



The dimensionless transmission coefficient depends
on the ratio of the impedances defined by Eqs. (11.2.17)
and (11.2.19)

1/ 1 + Zt-cCos Zý/ r

(11.2.20)

It is clear that the transmission must become total (Or= 1)
if the transmission impedance vanishes. This means that
the pressures are equal at both sides of the wall. The
transmission is zero if the transmission impedance tends
to infinity.

We see that, in general, 7depends on the angle of
incidence, even if Ztis independent of 29-. This means
that the transmission loss we observe experimentally,
where the sound is impinging the wall at different angles,
depends on the particular angular distribution of the
sound. Also one must realize that a given surface'S
only subtends the area S cos gin the direction of the
incident wave. (See Fig. 11.2.4). Therefore, when
averaging 'C over different plane waves, we have to mul-
tiply L with the weighting factor cos 9. Hence

n

=1 T k klk (11.2.21)nk=l

For a statistical sound distribution, as we may have in
the case of testing a wall between two reverberant rooms,
we may assume that the sound is equally distributed over
all directions. This requires the introduction of another
weighting factor sin z-ýbecause the region between ZAand
&R-+ ddcuts out a zone of a sphere 27r sin 2dZ d

Then we get for the average statistical transmission co-
efficient

V/2 r/2

0= o ý tcos sin fdZ/Q 2

'ir2/2 2 t os 2sin dn 2' .

o cos sin Od 0- o

(11.2.22)
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This may also be written
[-d(cos 2 ?) d(sin2 (•1.2.22a)

0 a

which is more convenient since r always appears as a
function of cos O-or sin ZY-or even sin2 2Y-directly. Such
averaging becomes more and more dependent on the accuracy
of the assumption of random distribution of angles of
incidence the higher the TL of the wall.

2. The "mass law". The TL of any single wall depends chiefly
on the mass per unit areat In general light constructions

* This law was first found experimentally by

Richard Berger in 1910 and is sometimes called
"Berger's Law" in the German literature.

L -S

FIGURE 11.2.4

An area S subtends an area S cos ,'to a plane
sound wave incident at an angle 2'.
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are more sound transmitting than heavy ones; and if it
is necessary to save weight, it will always be difficult
to have a high TL. However, there may be cases where
heavy constructions having special defects are worse
than other lighter constructions.

To a rough approximation, the mean TL may be

calculated from the formula

(TL)m = 14 log G + 24 (11.2.23)

where G is the surface weight in lb/sq ft. Tablelll.2.1
shows the surface weights of some common building ma-
terials.

A further empirical fact is that the TL generally
increases with frequency f. This may be derived from the
mass law observation on the basis of similarity. If a
heavier wall is better, then for a given material, the
thicker wall is also better. But in a sound field, all
thicknesses must be compared with the sound wavelength;
therefore, we have to expect a dependence on the ratio
h/ý or on the product hf if we replace i by c/f. This
general rule also holds when, as sometimes happens, an
increase of frequency results in a decrease of TL. In
these cases, an increase in thickness also results in a
decrease of TL.*

To explain these general dependences on weight and
frequency, the simplest assumption we can make is that
the wall behaves like a mass. This means that we have
to consider the transmission impedance as a mass reactance

z = jan (11.2.24)

where m is the surface mass and w the angular frequency.
Putting this into Eq. (11.2.20) we find

+(acos 2)
I[ 1/l +2 c" (11.2.25)

* See Beranek, Leo L., Phys. Soc. Acoustics Group
Symposium p. 1-6 (1949).
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Excluding grazing incidence, we may also derive this
result from Rayleigh's more general solution for the
transmission through a sheet of non-rigid medium having
high specific mass and small compressibility . This
shows that we do not have to discuss transmission through
"a wall in terms of its movement of an inert mass and as
"a result of longitudinal waves excited inside the wall.
The first kind of motion is only a special limit of the
second.

To compare Eq. (11.2.25) with experimental results
found for walls between reverberant rooms, we have to
average t over cos 2 maccording to Eq. (11.2.22). Doing
this, we get

t= (2 c/mi)2 in [1 + (am/ 2 P c)2]

(11.2.26)

or*

[TL]random = [TLI - 10 log (0.23 [TL]o).

(11.2.27)

where [TL]o is the transmission loss for perpendicular
incidence. This result sometimes fits the experimental
results quite well because it gives values of TL lower
than [TLIo and also a less rapid increase of TL with
surface mass and frequency.

However, this last equation can hardly be regarded
as the real interpretation of what happens because plotting
'" against cos 2 0-for high values of an/2 p c, we get a
very sharp peak at grazing incidence where r becomes one.

* This dependence sometimes is called the random-
incidence mass law.
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TABLE 11.2.1

SURFACE WEIGHT OF COMMON BUILDING MATERIALS

lb/sq ft/inch of thickness

Aluminum 14

Brick 10-12

Concrete

Dense 12

Cinder 8

Cinder Fill 5

Glass 13

Lead 65

Plaster

Gypsum 5

Lime 10

Plexiglas 6

Sand

Dry loose 7-8

Dry packed 9-10

Wet 10

Steel 40

Transite 9

Wood 4-5
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This dependence always has to be expected when Zt is
independent of the angle of incidence or is nearly in-
dependent in the region of grazing incidence. We may
call this the "component effect" because it has as its
basis the fact that the normal velocity of a wall is only
a component of the resultant of the velocities of the
source side and the back side. We must realize, however,
that the limit '-C = I for 2= 900 infers an infinite wall
and infinite plane waves and, therefore, cannot be realized
in practice. Furthermore, we know from wave acoustics
that in rooms, sound propagation exactly parallel to a
boundary plane can never occur.

Therefore, it seems reasonable to exclude angles
for which Eq. (11.2.28) does not hold

(Zr cos ZL9/2pc) 2 > ; 1. (11.2.28)

By integrating only to a limiting angle Z9', we find for

1

•-'=co / 2•, (2pc/awm cos a9) 2d(cos2 9ý)=(2pc/acn)lin ;/cos21z.,
Cos 2

(11.2.29)

corresponding to

[TLI = [TL] 0 - 10 log in I/cos 2 1'

(11.2.30)

Now we have the difficulty that the result depends
on the choice of the limit angle 29'. Taking lA' = 82.50
as a value which guarantees that Eq. (11.2.28) is satisfied
for [TL]o > 24 db, we get

[TL]o 8 25 = [TL] 0 - 6 db. (11.2.30a)

The same result is obtained if we calculate the TL for an
angle ZA = 600 only, so we also may write

[TL] 6 0 0 = [TL]o - 6 db (11.2.30b)
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We call this the "60° - mass law". It involves an
essential simplification for it replaces the averaging
over all angles of incidence by using a mean angle. In
the present case where the Yis monotonically increasing
with z29-, the choice of zA= 600 is reasonable.

It would seem better to choose IA= 450 because this
angle is in the middle og the ZJ-range and has the highest
weighting factor (cos 45 sin 450 = 1/2). In the present
case we get

[TL] 4 5 0 = [TL]o -3 = 20 log G - 20 log f - 31 db

(11.2.31)

which also corresponds to the average 't value if we
restrict the i-region from 0o to nearly 700. This "45°-
mass law" fits the experimental results for light construc-
tions quite well. By averaging over the frequency region
from 100 to 3200 cps (which means replacing f by the
geometric mean of 100 and 3200 cps),

[TL] 4 5 ,m = 20 log G - 24 db. (11.2.32)

where the second term agrees with that in the empirically
determined Eq. (11.2.23).

For higher values of G, all formulas which we have
derived from the assumption of Eq. (11.2.24) gives TL's
which are much too high. Therefore, we have to look for
other reasons to explain this discrepancy.

3. The Influence of Stiffness. It seems likely that
stiffness may be of importance. If we try to move the wall
very slowly, we feel its stiffness only as the reaction to
the driving force. This stiffness is given by the support-
ing or damping of the wall at the edges and also will be of
importance if a very low frequency sound pressure is driving
the wall. However, several authors have observed higher TL's
at low frequencies than those corresponding to mass law 2.2,2.3/.
Although this problem has not been solved theoretically,
it seems probable that such deviations may be accounted
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for by stiffness. But cases where stiffness gives an
increase in the insulation power must be regarded as ex-
ceptions for the present. Usually stiffness is a dis
advantage because the reactive forces due to stiffness
and those due to mass are not added. However, because
of their opposite phases they compensate for each other.

(a) Resonance. There are two kinds of effects
where this happens. The first is well-known in acoustics
as resonance, and means that the periodicity in time of
the driving forces equals the periodicity in time of a
free motion, i.e., a motion possible without external
forces. If we have a bar of the length I supported at
both ends, the resonance is given by the condition

/2 (11.2.33)

where AB is the wave length of the bending wave correspond-
ing to the same frequency. Formally we have the same
condition for an organ pipe open at both ends or for a
tube closed at both ends

S= A 2 (11 .2. 34 )

where io is the wavelength in air. But therv is an
essential difference between the two cases: in the case
of the propagation of the longitudinal waves in a tube,
the wave length is inversely proportional to the frequency

10  = colf (11.2.35)

whereas in the case of a bending wave,.it is inversely
proportional to the square root of the wave length

14
S= B ;:7j; (11.2.36)

or, the phase velocity of bending waves is proportional
to the square root of frequency

4

(11.2.37)
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In these equations, B is the bending stiffness. For a
rectangular bar with Young's modulus E, height h and the
breadth b,

B = E b h 3 /12 • (11.2.38)

If we substitute m = p bh and introduce the velocity for
longitudinal waves

CL IE/p (11.2.39)

we can write instead of Eq. (11.2.36)

B= .8 Oh/f (11.2.40)

In the case of plates, Eqs. (11.2.38), (11.2.39) and
(11.2.40) should be modified because of the hindered
lateral contraction in one direction. Taking this into
account, we have

BI = Ebh 3/12(l- P2) (11.2.38a)

cL' =/Ef(-2 (11.2.39a)

B /i.8 CLh/f (11.2.40a)

where p is Poissoxis ratio. Since this number is 0.3 in
most cases, the differences between these two groups of
equations, especially between Eqs. (11.2.40) and (ll.2.40a)
become so small that we may neglect them and speak simply
of B, cL and A B only*. Furthermore, these values may
depend much more on the individual variation of samples

• In the available handbook tables of sound ve-
locities, it is not even stated whether the
longitudinal velocity in a bar, a plate or an
infinite elastic medium is meant.
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of the same material for such things as concrete, brick,
and timber. For exact studies, it is recommended that
cL be evaluated by measuring the lowest natural frequency
fl of a bar. Then cL is given by

fl1 = .45 cLh/. 2 (11.2.41)

which follows from Eqs. (11.2.33) and (11.2.40). For
rough evaluations~the data in Table 11.2.2 may be used.

TABLE 11.2.2

SOUND VELOCITIES FOR LONGITUDINAL WAVES

Glass 18,000 ft/sec

Steel 17,000 ft/sec

Aluminum 17,000 ft/sec

Timber (fir, length-
wise5 16,000 ft/sec

Concrete 12,000 - 15,000 't/sec

Bricks with mortar 8,000 - 15,000 Zt/sec

Plywood 10,000 ft/sec

Asphalt 7,000 ft/sec
Porous Concrete 4,000 ft/sec

Air (20 0 C) 1,130 ft/sec

FIGURE 11.2.5

The bending wavelength A as a functioh of frequency
f (in kc/sec) for plates of thickness h (in inches).
These curves apply to steel and aluminum, for which
cL = 17,000 ft/sec.
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Furthermore, Figs. 11.2.5-11.2.7 contain graphs for the
dependence of length of a bending wave on frequency for
plates of different thicknesses for steel and aluminum,
concrete and plywood. From these graphs we also may find
the natural frequency of a rectangular bar supported at
the ends or a plate supported on an opposite pair of edges
if we remember that the wavelength is the double of the
length

For the case of plates of length •x and bzreadth v
usually the four edges are supported. Then Eq. (11.2.335
must be changed to read

AB =) 2/C/ 2 + Y)2

(11.2.42)
From Fig. 11.2.8, the value ý B may be found for plates
of lengths and breadths between- 0.2 and 20 feet. The
lowest natural frequency may be found either from this and
the graphs in Figs. 11.2.5-11.2.7 or by using directly the
formula

f11 =0.45 cL h [(1/1 x) 2 + (1/ty)2 J*

(11.2.43)

FIGURE 11.2.6

The bending wavelength A as a function of frequency
f (in kc/sec) for plates of thickness h (in inches).
These curves apply to concrete, for which cL=
12,000 ft/sec.
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Let us look at two examples: for a steel plate of
dimensions -(x = 6 ft, .. = 3 ft and h = 1/8 In. (which
may occur in machinehoodg), we find with cL = 17,000 ft/sec,
a frequency below the region of audibility and far below
the region of 100-3200 cps. But if we take a common con-
crete wall of 4 in. thickness with Ox = 72 ft and I = 8 ft,
assuming cL = 12,000 ft/sec, we find a frequency ofy40 cps.
Certainly walls and plates are seldom-only supported at
the edges which means that only the transverse motion is
hindered but not the slope at the boundary. If we assume
that the slope at the boundary is also hindered, that the
plate is really clamped, we have to expect natural fre-
quency tones more than an octave higher. However, clamp-
ing actually occurs very seldom. Usually, the boundary
conditions correspond more to supporting than to clamping.
Then the lowest natural frequencies are in the low frequency
range and an octave below this natural frequency we may
say the stiffness alone controls the transmissivity of
the wall.

On the other hand, we cannot conclude that above this
lowest natural frequency the wall is mass controlled. This
would be the case if only this lowest type of natural
mode existed. But since a plate is a two-dimensional
continuum, we have to consider a doubly infinite number of
natural frequencies given by

fn,m = 0.45 CLh [n/_ x) 2 + (m/y)21

(11.2.44)

FIGURE 11.2.7

The bending wavelength A as a function of
frequency f (in kc/sec) for plates of thick-
ness h (in inches). These curves apply to
plywood, for which cL = 10,000 ft/sec.
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The bending wavelength A for various values of JLx
and ly, (in feet), the s~des of a plate supported
at the edges.
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DIRECTION OF
BENDING WAVE

REFECE-•,' / / /
REFLECTED TRANSMITTED
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INCIDENT ," / ..

VIBRATING PANEL

FIGURE 11.2.9

Sketch showing how the coincidence effect operates
when a sound wave in air, whose wavelength is X
impinges on a plate at the anglefr . When A/sint
is equal to the wavelength of a bending wave in the
plate, the TL becomes quite small.
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and so we would have to expect the occurrence of
resonances in higher frequency regions too. Indeed, for
very undamped systems like a bell, this is the case.

However, if there are energy losses either in the
plate or at the boundaries, we know by experience, or On
the basis of an asymptotic law derived by Schoch 3.4/,
that the higher natural modes have only a small inRfuence.
Then a plate on which a sound wave impinges perpendicularly
acts like an inert mass the higher the frequency of sound
is compared to the lowest natural frequency of the plate.

Summarizing, stiffness is desirable only if the
lowest natural frequency is above the frequency region in
which we are interested. This condition is usually diffi-
cult to fulfill. Thus, we must make the natural frequencies
of walls as low aspossible. This means we should construct
walls of small stiffness but heavy mass.

(b) Trace Matching (Coincidence Effect). The same
rule as above applies because of another effect, where
inertia and stiffness also work against one another and
which seems to be of greater importance since it may
happen in the middle of our frequency region. If a plane
sound wave impinges on a wall at oblique incidence then
the pressure is working with opposite phases in the dis-
tance of half the "trace-wavelength"A 0 /2 sin A. So
the plate is forced to be deformed with the same periodi-
city as shown in Fig. 11.2.9. For any observer moving
with the trace velocity co/sin2A along the plate, the
deformation appears the same as we get if the plate is
periodically supported at distances of Ac/2 sin 2A. If
this periodicity in space of the driving forces agrees
with what the plate would present without forces, i.e.,
if

3o//)nB (11.2.45)

we have to expect total transmissivity Just as in the case
of resonance. Now by putting this into Eqs. (11.2.36) and
(11.2.40), we find that this "coincidence or, as we may
say more precisely, this "trace matching", happens for
special combinations of frequency and angles of incidence
given by

f = (Co2 /2r sin2  ) B (11.2.46)

WADC TR 52-204 102



and f = 0.56 c0 2/cLh sin2 ?/ (11.2.46a)

Furthermore, since sin varies between zero and one,
we may find these "trace matchings" only above a critical
frequency given by

fc = (co 2/2v) (11.2.47)

or fc = 56 co 2 /cLh (ll.2.47a)

In Fig. 11.2.10 these frequencies are plotted as a
function of the thickness for different materials. The
region where trace matching is possible is to the right
of these lines. We see that it is possible over the whole
frequency range for thick walls and that it is impossible
only in thin plates.

The question arises as to how this statement can be
in agreement with the general dependence on surface weight
found empirically. To discuss this problem more quantita-
tively, we will again consider the transmission impedance
which can be defined for a wall of infinite length on which
an infinite plane sound wave is incident. In this case
we get L

Z = Jam - jB sin 2 Z w 3/c 4 (11.2.48)

= J 2v fm (1-f 2 sin $/fc) (11.2.48a)

The first term gives the inertia reactance and is pre-
dominant below the frequency of trace matching. The
second term gives the reactance of the bending stiffness;
this term increases with the angle of incidence, being
zero at perpendicular incidence, and is proportional to
the third power of the frequency. From simple resonance
phenomena we are accustomed to a stiffness reactance
inversely proportional to the frequency. But this is
still the case here. The f3 dependence is overcompen-
sated by the fact that the stiffness of a beam supported
at its ends is inversely proportional to the fourth
power of the length of the beai and tois length is given
by co/2f sin zA; hence B I I/L+ Jl/fq.
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From Eq. (11.2.48a) we get for the TL

[TL] = 10 log [1 + (rfm cos 2/pco) 2 (1-f 2 sin2 Z/fc)2].

(11.2.49)

In Fig. 11.2.11, a map is given showing contours
of equal TL over a [log f - cOs 2 -9-] plane. Dark regions
indicate good sound insulation; light regions, poor sound
insulation. For 2A = 00 we have a monotonic increase of
TL corresponding to the 00 mass law. There is, in general,
a decrease from bottom to top due to the component effect.
The trace matching effect cuts a deep valley beginning at
the point (fc,0) and curving asymptotically to the (cos22A= 1)
line. At the left of this valley the wall is mass controlled
while at the right it is stiffness controlled.

Since for a given material and a homogeneous wall,
stiffness also increases with thickness with the third
power, we see that the heavier wall insulates better also
in the region where stiffness predominates. Since the
specific material constant, i.e., the longitudinal sound
velocity CL, only varies between 10,000 and 18,000 ft/sec
for most materials in which we are interested, it
has been very difficult to decide if the empirical
dependence on weight means a dependence on mass only or
if stiffness is a factor too. From Figs. 11.2.10 and
11.2.11 we conclude that in most cases of walls in build-
ings, stiffness must be predominant except at perpendicular
or near perpendicular incidence. The special values for

FIGURE 11.2.10

The critical frequency f plotted as a
function of the plate thickness h (in
inches) for which the coincidence effect
is possible. At this frequency, the TL
is quite small.
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which Fig. 11.2.11 has been calculated corresponds to a
plywood panel of 0.8 in. thickness. But the type of de-
pendence may be regarded as general.

For comparison with measurements and also for most
of the practical applications, we are interested in the
average value for a statistical distribution of angles
of incidence. This requires putting Eq. (II.2.48a)
into Eq. (11.2.20) and then integrating over sin2 ZAcor-
responding to Eq. (11.2.22a). This integration has
been carried out omitting only a small region above
f = fc. The results are given in Fig. 11.2.12 using the
dimensionless parameters

=f/fc (11.2.50)

0% = cfcm/PCo (11.2.51)

The last parameter determines the TL for the critical
frequency and perpendicular incidence

[TL]oc 10 log (l + a 2 ):20 log 6coc ~ c

(11.2.52)

The results are shown in Fig. 11.2.12 and can be
used to give a general idea of what can be expected for
very large, undamped walls. The experimental results
never show such a pronounced valley Just above fc. This
may be easily understood if we plot T as a function of

FIGURE 11.2.11

Contours of equal TL on a cos 2 g- frequency
plane. The "valley" at the right is a result
of the coincidence effect.
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sin2 and see that this curve again has a sharp peak at

the angle of trace matching. We may write the expression
for rC as

=1/Li + (61S) 2 (11.2.53)

where E is the relative variation of the abscissa with

sin 2 Z)- = 1/ý (11.2.54)

E = sin 2 ZY - 1/ý (11.2.55)

and 2 6 is the bandwidth, which in the present case is

6=l/[2 (T_ / (11.2.56)

It is not important that the dependence on 6 given by
Eq. (11.2.53) only holds for a small region because the
integration we have to execute gives

62

/ = &[tan -l/6 + tan-1  l/

(11.2.57)

or with sufficient accuracy

(11.2.57a)

as long as the limits E2 and 6 are greater than 3 S
But these restrictions are possible only for higher fre-
quencies where trace matching no longer occurs at
grazing incidence. And in this region we would have to
expect

[TL] = 10 log (2 [1cL 2 ' 1 1/• /n) (11.2.58)

S(1/2) [TL] oc + 20 log (ffc - 2. (11.2.58a)
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It seems plausible that such sudden changes of transmis-
sivity with the angle of incidence will not really occur
and the assumption that under the conditions of trace
matching total transmissivity will be reached must be
violated; the conditions for trace matching must be also
violated if we take into account the finite length of
the wall or any kind of losses either in the wall itself
or at its edges.

We can treat the inner losses by introducing a
complex Young's modulus instead of the usual real modulus
E

E = E(l + ii) (11.2.59)

where V , the loss factor, characterizes the phase shift
between strain and stress and from experiment may be
regarded as independent of frequency.

With this complex modulus the transmission impedance

becomes a complex quantity also, given by

Zt= ýBw3 sin 472'co4 + J[an - Bw3 sin4 ?-/co4].

(11.2.60)

Putting this into Eqs. (11.2.20) and (11.2.22a), we again
may find'm and finally TL. The results of this even more
troublesome calculation are given in Fig. 11.2.13 for the
case ofLc = 100, 200, 400 and 800 corresponding to [TLjoc
= 40, 46, 52 and 58 db.

The behavior at high frequencies again may be under-
stood by looking at the neighborhood of the peak only.
Here first the peak itself is lowered to the value

m = i/[ + 1 - l/ ] 12. (11.2.61)

FIGURE 21.2.13
TL vs. • for various values of OCc when inner
losses are introduced into the plate.
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If we now write

(11.2.62)

and change 5 to

(1 + M /-42 l-1/e)

(11.2.63)

we get for high frequencies

T S r.-ir/[ 2 C~ j2 /1_1/4 + 2 )ýfl 2( 43_j2)]

(11.2.64)

or

[TL] =10 log [2 or 42 ,/¶i/ (1 + tl-1/o)/'r]

(11.2.65)

For th- , is identical to Eq. (11.2.58); for
a z •v-1/e > 4, Eq. (11.2.65) becomes

[TL]=[TL]oc + 30 log(f/fc)-l0 log f/(f -f)-1o log (l/q2

(11.2.65a)

For a rough eva±uation, the third term may be neglected.
Equation (11.2.65) also vanishes asymptotically but the
first order theory of bending waves which have been used
is valid only as long as > B Ž6h. This will be the case
if 9 = 3.24 cL h/co AB <0 .5M C/Co; for concrete where cL=
12,000 ft/sec, this means 9 < 5.2.

The most essential fact which may be seen from
Fig. 11.2.13 is that the insulation power increases again
in the region sufficiently far above fc* One of the
physical reasons for this behavior may easily be understood
by looking at the contours of Fig. 11.2.11. There the
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"valley of trace matching" becomes smaller and smaller.
This is connected with the fact that the "peaks" at both
sides become higher and higher but the latter alone would
be of less importance because the tops scarcely influence
the result. In the case of inner losses, the bottom of
the valley increases in the region of higher frequencies.
This general behavior is in agreement with experimental
results, but the valley in the neighborhood of fc is not
as deep and the slope above fc is not as large as would
be expected. Also the influence of damping, which should
be very high, has not yet been confirmed. It seems that
the energy losses at the edges and the finite length of
the wall are of more importance. This finite length has
to be compared with the wavelength of bending waves at
the critical frequency, which means the wavelength in air
also. This may be the reason why pronounced trace match-
ing effects never have been found with thick, heavy walls,
e.g. brick walls, where the critical frequency is below
100 cps. Here the wavelength at 11 ft is of the same
order of magnitude as the length and breadth of the wall.

Generally speaking, we may avoid the trace matching
effects by either use of very thick and stiff walls or by
use of walls which have small stiffness, but not too
small a mass. For homogeneous plates this is a question
of thickness. For example, we may say that walls of
porous concrete of thickness from 1 in. to 3 in. are
dangerous since the critical frequency is in the middle audio
range. Also for wooden plates of common thicknesses the
critical frequencies are in the region of interest.
Fig. 11.2.14 shows the measured TL for a plate of about
5/8 in. thickness. By cutting grooves in the panel, that
is, by decreasing the stiffness without remarkably alter-
ing the mass, it was possible to increase the critical
frequency above the region of interest and so to improve
the insulation 2.

The decreasing of the stiffness not only increases
the critical frequency, it also decreases the lowest
natural frequency, which is a further advantage. As may
be derived by comparing the formulas for the lowest
natural frequency for a bar or a plate only supported
at two opposite edges

f = (r/21 2 ) 7-M (11.2.66)
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(following from Eqs. (11.2.33), (11.2.36), and (11.2.47),

fl fc = (c,/2 _)2  (11.2.67)

This is the square of the natural frequency of an open
organ pipe of the length I . Equation (11.2.62) may also
be used to evaluate f experimentally by measuring f1 "

Another possibility for evaluating f. is by measur-
ing the static sag 9 max due to its weight of a bar or plate
of length I supported at the ends. This is proportional
to the surface mass and inversely proportional to the
bending stiffness

ý max = 5 mg - 4/384B (11.2.68)

where g is the acceleration of gravity. Combining this
with Eq. (11.2.47), we find

fc = 385 co2 (./lOr _Q2 g

(11.2.69)

or since c and g are given constants

= 90000 (11.2.70)

where C max is given in inches and I in feet. This equation
is of special interest because it shows that a plate sup-
ported at 6 ft intervals should have a sag of at least
2.5 in. if the critical frequency shall be above 4000 cps.
Certainly slich plates could never be loaded. But in all
cases where plates which are not too heavy are to be
installed for noise abatement only, this rule should be
observed as far as possible.
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TL vs. frequency for a single panel and for the same
panel when the stiffness was decreased by cutting
grooves into one side of the panel.
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Double Walls. Improvement by a Second Rigid Partition.

To attack the problem of double walls, first we
may treat the case as one where a rigid partition is pre-
sent. For example, the rigid partition may have been
constructed for structural reasons but was found to be
poor with respect to sound insulation qualities. From
the results derived for a single plane wall we may con-
clude that we would have to increase the weight of the
wall. But even if it would be possible to double the
weight of the wall, we would gain only about 4 db for the
mean TL according to Eq. (11.2.23). In practice, we are
able to add only about a fifth of the original weight and
so as long as the second wall is fixed rigidly to the
first, we can obtain at most a 1 db improvement.

But we may gain an appreciable improvement, at least
for higher frequencies, if this additional partition is
separated by an air space of several inches. It is plau-
sible that such a fourfold change of medium results in
better insulation than the twofold change in the case of
a single wall. However, there are exceptions where we
do not improve the sound insulation, but rather decrease
the sound insulation over that of the original wall.

In general, we have to expect that the resulting
transmission coefficient now will depend on the trans-
mission impedances of both walls, Z 1 and Z 2 ,and on
the distance d between the walls. Generalizing a very
elegant representation given by London . we may write

instead of Eq. (11.2.20)

2

1 1+ S t 2 cs 2 + zInzC 2 C 2 go-e-2
2 p0c0  2 2 0 2

(11.2.71)

First we may see that the third term vanishes for d = 0.
In this case we get Eq. (11.2.20) where both impedances
are simply added. If both impedances are mass reactances,
the wall behaves like a single wall of mass (mi + m2 ).
If both impedances are bending stiffness reactances, they
are added also. But in this case, two plates of the same
material with thicknesses hl and h 2 , do not behave as one
plate of the thickness (hl + h 2 ) because the bending
stiffness is proportional to the cube of thickness; here
the possibility of tangential motion of one plate against
the other decreases the stiffness in the ratio
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(h1 + h 2 )3/(h, 3 + h23).

Since we are interested only in very large values
of Z -1 and Z -rc2, the product Z -Cl1 Z '-C2 is always a
large quantity. Therefore, a small value of cad is suffi-
cient to make the third term equal to the second. We may
expand the expression in brackets in the third term for
small oa1 and obtain

l-e-2Jwd cos Z?/c = 2J(wd cos Z0/c) + 2(cid cos 2*/c) 2

Now considering Z 'c 1 and Z - 2 to be pure reactances, we
may split up Eq. (11.2.71) into real and imaginary parts

z 1z 2 cos 222 + ((Zrl + zV 2 ) cos
2 p24 2..C
2p c

Z+Ci Z coZ3-- d 2
""2p2 ) (11.2.71a)

Now if Z r2 is a mass reactance and Z-C 1 >"Z - 2, the second
term vanishes at a frequency given by

= /pcm 2d cos2 ZA- (11.2.72)

For 2- = 0, this frequency corresponds to the free oscilla-
tion of a mass m2 combined with the resilience of the air
space pc 2/d. Furthermore, it can be derived that the
resilient reactance of such an air space is increased by
the ratio 1/cos L2-if the sound impinges at an oblique
angle and lateral motion in the air space is not hindered.

But if lateral motion in the air space is hindered,
which always may be assumed when some absorbing material
is put into the air space, we have to set cos a = 1 in
Eq. (11.2.72), regardless of the angle of incidence.
Furthermore, if we express m2 by the surface weight G2
in lb/sq ft and the thickness d in inches, we find

fo.= 170/ G2d . (11.2.72a)
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If both reactances can be assumed to be pure mass
reactances and the surface weight of the first wall G,
is not much greater than G2, we have to substitute for
G2 the "resultant surface weight"

Gres = GG 2/(G + G2 ) . (11.2.72b)

In this case, both masses oscillate out of phase with
the ratio of the amplitudes of oscillation inversely
proportional to the ratio of the weights. At this 'zero
mode" frequency of the double wall, the transmission loss
is very small; for two equal mass reactances the TL may
be zero. In the neighborhood of this frequency, the
double wall is worse than a single wall even of the weight
of the heavier partition only. Thus the second partition
has not improved the sound insulation.

The first step in calculating a double wall construc-
tion is to make the product of G2 d or Gresd so large that
fo is below the region in which we are interested. In
most practical cases, it will be sufficient to choose
fo < 54 cps; this means that we have to make

G2 d > 10 lb in./sq ft . (11.2.73)

The only way to save weight is to enlarge the distance d,
and even this holds only if d is not too large, as we
will see later.

One octave above fo, the second term in Eq. (ll.2.71a),
is very much greater than the first. Comparing the cor-
responding TL with that given by a wall of Z'1 l only, we
find that the improvement of transmission loss is

A [TLI = 20 log (w2 dm2 cos 2Y/pc 2 ) = 40 log (./c%)

(11.2.74)

If the lateral motion in the air space is hindered, we
may replace w0 by woo; the improvement of TL becomes then

A [TLI = 40 log (f/f 0 0 ) . (11.2.74a)

This very simple formula allows a rough evaluation of the
slope of TL vs frequency in the region of f/f00 from one
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to two and sometimes to even three octaves above fool
But then the slope of TL, which would be 18 db/octave
if both walls follow the mass law, decreases. One of
the reasons may be se#e from Eq. (11.2.71). The expres-
sion (1-e-2Jwd cos ?-/cJ only increases with frequency for
small wxd, but it is never greater than 2. This highest
value occurs at

f(2n + i),Z= (2ncos +)-

(11.2.75)

or when lateral motion in the air space is hindered, at

f(2n + 1),0 = (2n + 1) c/4d (11.2'.75a)

The corresponding highest values of the improvement in
TL are given by

A [TL] = 20 log(wn 2/poc) cos 2A. (11.2.76)

This improvement is 6 db higher than the TL we would
expect from the second wall alone. The straight lines
given by Eqs. (11.2.74a) and (11.2.76), the latter calcu-
lated for ZR-= 450, may be used as upper limits for the
improvement by a second partition.

But we have to expect that between the frequencies
of maximum transmission loss, given by Eq. (11.2.75),
there are always frequencies at which the transmission
loss is very small, or even zero for two identical
partitions. For Z ' 1 >Z m i2' these frequencies are given
by

fn = nc(l + pd/v2n 2 m2 )/2d cos ZA (11.2.77)

or approximately

f = nc/2d cos -. (11.2.77a)
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The difference between Eqs. (11.2.77) and (11.2.77a) is
of interest only if the minimum transmission coefficient
must be calculated. Equation (11.2.77a) is true when
the sound pressure in the air space at the opposite points
of the walls is either in phase or 1800 out of phase.
For Z• = 0, the condition becomes

fn = nc/2d (11.2.77b)

which is the well known formula for the eigenfrequencies
of one dimensional sound motion between parallel rigid
walls. Therefore we may call the fn the resonance fre-
quencies of the air space and fo the resonance frequency
of the double wall.

With increasing separation of the two partitions,
the lowest of these resonance frequencies decreases.
This is the reason why increasing this distance may not
always be helpful. If, for example, we want to avoid
the case where f, becomes smaller than about 1000 cps,
we should keep

d z_ 7 in. (11.2.78)

Again Eq. (11.2.77b) has to be used instead of
Eq. (11.2.77a) if the lateral coupling in the air space
is hindered. If this is done by a porous material, the
difference between minima and maxima of TL in this
frequency region will decrease.

Influence of Absorbing Material in the Air Space.

As has been shown by London, in most cases we would
not expect any improvement in sound insulation by an
additional partition without introducing any absorption
The reason is that for each frequency above fno, (n + I)
angles of incidence exist for which total transmission
occurs. By averaging over all angles, the sound trans-
mission in the neighborhood of these angles predominates
and results in an average transmission coefficient that
is higher than that for the single wall. This may be
substantiated in a manner similar to that shown for the
problem of transmissivity in the case of trace matching.
As in that case, it may be shown that the results for
the average transmission coefficient are influenced
strongly by any kind of energy losses.
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To get agreement between the experimental data
obtained with reverberant rooms and theoretical calcu-
lations, London introduced external friction terms in
the impedances of the partition walls which he assumed
to be inversely proportional to cos 2.. There is no
physical evidence for such resistance terms and, there-
fore, the physical properties of walls offer no data for
the evaluation of these resistances.

Another possible way to introduce energy losses
is by means of a complex Young's modulus, as was done in
the case of trace matching effects. But here also an
adequate value of the loss factor can only be found by
experiment and must be assigned a much higher value than
the loss factor corresponding to the material alone.

The only kind of energy losses which we are able
to calculate from measurable physical data are those
which occur when the space between double walls is filled
with porous material. The theory of those materials has
been developed to such a degree (see Sec. 12.1) that
sufficient agreement between theory and experiment has
been achieved. We are interested only in porous materials
that do not make an elastic connection between the walls
by virtue of their skeleton. Under this assumption, we
need only two quantities to characterize the porous ma-
terial. The first is the propagation coefficient for
propagation perpendicular to the walls inside the porous
material, which is assumed to be a complex quantity

kx = kx - J gx (11.2.79)

The second is the characteristic impedance of the porous
material, which is defined by the ratio of sound pressure
to the component of the velocity perpendicular to the walls
for a propagating wave

A

This also is a complex quantity. With these definitions,
we find for the transmission coefficient
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"C: =I[ '+(Zl+z2)°o COS • ]oh d)+[: (zl+Z2)/ ,+xco /oA A

+ Pc/2x cos §+ ZlZ2 cosA/Axfc] sinh(jkxd)1-2

(11.2.81)

Fortunately for most practical applications the last term
predominates so that we may simplify the cumbersome ex-
pression in Eq. (11.2.81) to

A 2
2Zx P A
-- 12 o sinh(j k xd)ZI z2 cos

(11.2.81a)

and write for the transmission loss of the whole con-
struction

zI z 2 cos zf-
[TL•] = 20 log 2 sinh(J k

2Zx vc

= 20 log z2 co.. + 20 log e-si(J kd).

(11.2.82)

Finally, we get for the improvement of the transmission
loss given by the second partition and the air space
filled with absorbing material

A

z2 sinh (j kxd)
[TL] = 20 log A

zx
(11.2.83)
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To simplify the theory, it seems reasonable for the
present problem to neglect the small vibrations of the
fibers. These vibrations are of importance at low fre-
quencies only. Then we may write

A

k= [(c - sin 2') - Jrc/o p]1/2 /c

(11.2.84)

and A i-Jr /• p] pc/o-
x X [ - sin2'9) - jr -/wpJii2

(11.2.85)

Here 0-is the porosity, i.e. the ratio of air volume
inside the porous material to its total volume, for which
a mean value of 0.8 may be used. Nor will taking a-= 1
for simplicity change the results seriously. More im-
portant is the structure factor X which may vary between
1 and 10, or even 25. For fiberglas blankets, the lower
limit is usually appropriate. But the most important
quantity for characterizing a porous material is its
specific flow resistance r. This can be measured with a
steady state flow driven by a fixed pressure difference
across a sample of the material.

If
rd > pc, (11.2.86)

which is easy to fulfill, we may show from Eqs. (11.2.78),
(11.2.84) and (11.2.85) that at the lower frequencies
where sinh (j k d) may be replaced by (j k d), the improve-
ment is given bý the simple relation of Eq'. (11.2.74a) for
all angles of incidence.

A

At high frequencies, we may replace sinh (j k d) by
(1/2) egxd, which means neglecting some fluctuations about
this value. Then we get for the improvement in TL

A

A [TL] = 20 log (Z/2Zx) + 8.7 gxd • (11.2.87)
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In the limit of sufficiently high frequencies, we get

for C- = 1 and -X = 1 from Eqs. (11.2.79), (11.2.84)

A [TL] = 20 log (Z 2 cos 2)/2ec) + 4.3 (rd/ec).

(11.2.88)

The first term of the above equation corresponds to
the transmission loss which would be expected if only
the second partition were present. If this partition
behaves like an inert mass, we find that

A [TL] = 20 log (an cos 2J/2pc) + 4.3 (rd/-c)

(ll.2.88a)

The presence of damping material in the space between
the walls causes an addition to the transmission losses
over those of the single walls. Furthermore, the second
term takes into account that even in the short distance
between both walls, the propagating sound wave is damped.
From this point of view, it seems advantageous to make
use of materials with high flow resistance. But there
may be restrictions because materials with high flow
resistance will introduce higher stiffness at low frequen-
cies and so increase the resonance frequency fool

A general experimental evaluation of Eqs. (11.2.83),
(11.2.84) and (11.2.85) has not been made as yet, not
only because the corresponding calculations would be very
cumbersome, but also because the results probably would
give much higher values of TL than are actually achieved
in practice. The reason for this disagreement between
theory and practice is that the sound not only passes
through the air space from the first wall to the second
wall but also through the rigid bridges found at either
the edges or at common studs of the wAll. The present
aim of research in this field is to decrease those
influences either by using special types of bridges for
which calculations can be made (see Sec. 11.3) or by us-
ing flexible panels whose critical frequencies are as
high as possible 3.8/.
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11.3 Insulation of Impact Sound

Excitation of Impact Sound. In the discussion of
the insulation of airborne sound in the previous section,
we had to deal with structure-borne sound problems be-
cause every airborne sound will be transformed into
structure-borne sound if it impinges on a structural ele-
ment. But structure-borne sound may also be excited
directly. This is the case, for example, if any vibrating
apparatus is mounted on a wall. Also, a very common type
of direct excitation of structure-borne sound is the impact
of rigid bodies against a rod or a plate.

The chief difference between the excitation by air
sound pressures and by forces transferred by rigid bodies
is a difference in the extent of the area over which the
driving force is applied. In the last case, we may regard
this area as being concentrated at a point. Therefore,
we are interested in knowing the reaction of the driven
continuum to a "point source". In other words we are
interested in the mechanical point impedance, i.e., the
ratio of an alternating driving force to the resultant
alternating velocity.

For a rod infinite in one direction and set in
longitudinal vibrations at the free end this mechanical
impedance is

ZL = A Vr-E-= m cL . (11.3.1)

Here A is the area of the cross section, p the density,
E Young's modulus of the material, m the mass per unit
length and cL the velocity of longitudinal waves in the
medium composing the bar. In this case, the input imped-
ance, which also is equal to the characteristic impedance
of a progressive longitudinal wave in the rod, is real
and, therefore, independent of frequency.

But if the force is acting transversely at the free
end of the infinite rod, the impedance becomes complex,
it being given by

ZB = m3 B Jw/2 = (1 + J) mcB/2 (11.3.2)

WADC TR 52-204 127



where B is the stiffness against bending and cB the
phase velocity of bending waves; see Eqs. (11.2.37
and (11.2.38). The input impedance is complex
because in addition to a progressive ending wave a
quasi-stationary motion which dies away exponentially
with increasing distance from the source is excited.
The general differential equation for bending waves in
a rod

d4v 2B--=mUv (11.3.3)

is of the fourth order. This equation allows wave
motions,

V = exp (t 1 kBx) (11.3.4a)

as well as motion of the quasi-stationary type,

v = exp (+ kBx) (11.3.4b)

where

B=B=V (11.3.5)

(See Eq. (11.2.36)). Usually both types of motions are
needed to fulfill the boundary conditions for the force F,
moment of bending M, transverse velocity v and angular ve-
locity w. A further consequence of the complex character
of this impedance is its dependence on frequency, which
is included in the dependence of the phase velocity of
bending waves on frequency.

If the transverse force is acting at any point on
a rod that is infinite in both directions, the impedance
has the same character but four times the magnitude. In
this case

zB= 2(1 + j) m cB . (11.3.6)

The most important point impedance is that of an
infinite plate driven by a transverse force. Since here
also bending vibrations are excited, a complex impedance
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as in Eqs. (11.3.5) and (11.3.6) would be expected.
In addition, the problem is more complicated due to its
two dimensional character. Fortunately both complica-
tions compensate for each other in the case of the point
impedance. In this case it is real and independent of
frequency and is given by

z = 8 mB (11.3.7)
2

where m is the surface mass density in, say, gm/cm2. For
a homogeneous plate of thickness h, this formula may be
written

2
Z = 2.3 cLp h (11.3.7a)

Fig. 11.3.1 gives the values of ZB as a function of
the thickness for homogeneous plates of steel, aluminum,
concrete, asphalt and plywood. For the last three kinds
of material, the values are mean values. The straight
lines are drawn between the limits of thicknesses which
are of practical interest. It may be remarked that the
values for Z vary over the very large range from 102 to
100 kg/sec.

For large, thin, damped plates, the values given by
Eq. (11.3.7) are in fairly good agreement with measurements
3.12 3.2, 3.3/. For thicker "plates" such as walls and
ceilings, important deviations must be expected 3.2, 3.3/.
For this reason the line for concrete walls in Fig. 11.3.1
is dotted and shows only the order of magnitude. For
comparison with measurements, the assumptions of the
Eqs. (11.3.7) and (11.3.7a) must be considered. First,
the plate is assumed to be infinite or at least large com-
pared to the bending wave length. This fixes the limit
of validity for low frequencies where the eigenfrequencies
are well separated. Here we have to expect large devia-
tions because of resonance phenomena. On the other hand,
the simple theory of bending only holds as long as the
bending wave length is at least six times greater than
the thickness. This fixes the limit of validity for high
frequencies. These limits have been given in Fig. 11.2.5.
For the present problem this limit may be lowered further
because of the point-concentration of the force. For
thicker plates, one must always take into account the local
elasticity which diminishes the motion of the plate from
that of the driving point.
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Finally, for all frequencies it is important that
the plate be homogeneous. However, in many practical
cases this assumption is not valid. For example, some-
times a plaster sheet is not in good contact with the wall
to which it is attached. In such cases, especially if the
construction is obviously inhomogeneous, it may be neces-
sary to measure the impedance. Often it will be sufficient
to know the absolute value of the impedance. This can be
measured by exciting the plate with an electrodynamic
sound source, with the moving coil fixed directly to the
wall or ceiling. The magnet system should be connected
to the wall only by means of a resilient element. Then
the same force (given by the magnetic field and the electric
current) acts on the mass reactance of the coil in series
with the plate impedance and on the mass reactance of the
magnet system. If now the same pick-up is used to measure
first the velocity vl (or acceleration) of the plate and
then that of the magnet system v 2 we get

v2vl = (j ano + z)/jajn (11.3.8)

where M is the mass of the magnet system and mo the mass
of the moving coil.

From this we find for the absolute value of Z

Z = aonI v 2 /vI 1  1 (11.3.8a)

or if Z>ano
Z = [()2 v /v 2 _ (o)12]I/2

(11.3.8b)

assuming that Z is real. In other cases, the phase angle
between vI and v 2 must also be measured. One must be
sure that the magnet system behaves as a rigid body 3._/.
If it does not, the force must be obtained from the
current in the coil and the absolute value of the velo-
city must be measured L.21.
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The Spectrum of Impact Sound. The knowledge of the
mechanical impedance has several advantages. For example,
we may estimate whether or not a load will change the
vibration of the body under test. We can calculate the
velocity which may be obtained using a sound source of
known force and known internal impedance. Also, the case
of impact sound may be treated using the mechanical point
impedance.

When a rigid body of the mass mo strikes a rod or
plate with the velocity u 01 we get the same result as if
a force impulse (moUo) works on the mass reactance Jan
and the impedance of the rod or plate Z in series, pro-
vided that the latter increases less rapidly with fre-
quency than amno. In this case, the mass reactance Jmoin
may be regarded as the internal impedance of the source.
Since the frequency components of the force impulse are
all equal, namely mouo/i, we find for the corresponding
components of the velocity of the plate

u. =mou/r(Jaco + Z) (11.3.9)

if Z > Yano

uC mouIWZ (11.3.9a)

For thin, large and fairly well-damped plates, we
may take for Z the values given by Eq. (11.3.7) or
Fig. 11.3.1. In these cases, the mass reactance is greater
than the wall impedance in the audio frequency region.
The heavier the mass mO and, therefore, the lower the "cut-
off" frequency given by the increasing mass reactance in
series with Z, the hollower the impact sounds. Also,
this is in agreement with our experience that an impact
sounds hollower, the thinner, lighter and more flexible
the plate is.

For thick walls, Eq. (11.3.9) is no longer valid
because of the local elasticity around the point of impact.
However, if we take into account a resilience K which for
simplicity is assumed to be linearly dependent on ampli-
tude between the striking mass and the impedance of the
wall calculated according to Eq. (11.3.7), the velocity
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in which we are interested is no longer the velocity u
of the mass to-, but the velocity of the plate v outside
the local resilient region. As may be derived easily
from the schematic given in Fig. 11.3.2, the spectrum
for this velocity is given by

m u
TF (J Wmo + Z (1 (0 mO/K)]

00I- F mu

K

FIGURE 11.3.2
Mechanical schematic diagram for the impact of
a mass mo0 with velocity uo on an infinite plate
with local resilience represented by the spring K.
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In Fig. 11.3.3 the spectrum of v. is plotted for fixed
values of mo and Z and different values of K. Since
energy losses are neglectedthe lack of high frequency com-
ponents results in an emphasis of the lower frequency
components.

For comparison with measurements, it should be noted
that Eq. (11.3.10) assumes constant bandwidth. When using
octave band filters or third-octave filters, the measured
results must be reduced to equal bandwidth, i.e., the
measured amplitudes must be multiplied by w-1/2 .

In the routine technique of impact sound measurements
in buildings, instead of v the mean sound pressure in the
receiving room is measured. In this case the radiation
power of the wall or ceiling, which depends on the ratio
of the frequency to the critical frequency (see Eq. 11.2.47)
and the absorption power of the receiving room, enter into
the results.

Improvement With a Resilient Layer. In the last
section we have introduced an unavoidable resilience K
between the striking mass m and the plate characterized
by Z. However, as we know from common experience with
thick rugs, such an elastic layer is simple and effective
as a remedy for impact noise.

The improvement of such a covering may be expressed
by the difference of the sound pressure levels in the
receiving room measured with and without the covering.
Since the absorption power and the radiating power of the
ceiling is not altered, the "improvement" may also be
expressed by the ratio of the corresponding velocities
of the ceiling or wall at the place of impact

AL = 20 log (vl/v 2 ) . (11.3.11)

For not too high frequencies, we can use Eq. (I1.3.9a) that

V 1 = m0 Uo/WZ
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FIGURE 11.3.3

The spectrum shape off the impact-induced vibration
when a mass mo strikes a plate whose point impedance
is Z.
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and for not too low frequencies we get for the covered
ceiling from Eq. (11.3.10)

v2 = Z Z

0

so that we find

A L = 40 log (w/c') = 40 log (f/f') (11.3.12)

where

f' (11.3.13)

is the eigenfrequency of the system consisting of the
striking mass mo and the stiffness K of the elastic layer.
This stiffness is not only given by the properties of the
layer, but also depends on the compressed area, or in other
words, the form of the striking body. Furthermore, in
most cases the area changes during the impact. Therefore,
the linear resilience which has been assumed can be
regarded only as a simple model. From this model we see
that the improvement depends not only on the kind of
covering but also on the striking body, especially on
its mass mo. As may be seen from Eqs. (11.3.12) and
(11.3.13), the improvement increases with w.

The standardized European test technique for impact
sound control uses a falling mass of 500 gm (1.15 lb).
Compared to a person walking, this mass seems to be too
small to represent step noise 3._/. However, step noise
is not the only kind of impact noise, In the case of
light switches, for example, the striking masses are much
smaller, but the noise is still annoying.

It may be noticed that the improvement is independent
of the impedance of the ceiling provided that it is suf-
ficiently large and provided the local elasticity may be
neglected. This is in agreement with measurements 3-/.
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Improvement by a Floating Floor. Ideal Conditions.
It is not always possible to cover a ceiling with only
a resilient layer. In addition, a durable finish is
needed. Covering the resilient layer with a rigid plate
not only protects the layer, but it also has an acoustic
advantage. We speak of a "floating floor" if the layer
is highly resilient and the plate is stiff enough to
bear the load of furniture and persons without too great
a deformation.

In this case the improvement may be calculated.

The formula is similar to Eq. (11.3.12) 1./

An = 4o log (f/fl) . (11.3.14)

But now the reference frequency is the eigenfrequency of
the system consisting of the surface mass unit area of
the floating floor ml and the stiffness K1 per unit area
of the elastic layer. Thus,

f 1 (11.3.15)

Here the quantity K1 is well-defined. It consists of

two parts, K1' and KI" where

K1 = KI' + K1 " . (11.3.16)

K1' is the stiffness of the fibers of the layer which
holds the floor at the distance d from the ceiling

K1: = El/d (11.3.17)

and K " is the stiffness of the air enclosed between the
floating floor and the ceiling

K 1  = oc 2/crd. (11.3.18)
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Here a-is the porosity of the fiber blanket and may be
assumed to be nearly one. The elastic modulus E1 may be
evaluated by measuring the eigenfrequency of a given mass
on a small portion of the blanket 11./. In this case the
resilience of the air may be neglected since the air can
escape laterally. But for an area of floating floor
which is large compared to the wavelength of the sound
frequencies, the air under the floor must be compressed.
Generally it is of no acoustic advantage to make the
blanket more resilient than the air but it would be a
disadvantage from the structural viewpoint.

If we assume K1 t_ K) = pPoc 2 /d, fl becomes equal to
fo' defined by Eq. (ll.2.71a), i.e.

f1l = 170/ /Gld (11.3.19)

where GI is the surface weight density of the floating
floor in lb/sq ft and d is the distance between the float-
ing floor and the ceiling. This distance has to be mea-
sured for the finished floor. It may be measured with a
part of the blanket loaded by about 40 lb/sq ft, corres-
ponding to the weight of floor and furniture.

It may be remarked that the improvement of the float-
ing floor with respect to impact sound is the same as the
improvement with respect to airborne sound which was given
by Eq. (11.2.74). But it may be mentioned that the deri-
vations of both formulae and the physical basis are quite
different. In one respect, however, we may make further
use of this analogy. For the airborne sound problems,
we mentioned that for a wave at oblique incidence, lateral
motion in the air space is excited and results in a
higher stiffness. However, with a fiberglas blanket in
the air space, this motion is hindered and the stiffness
for waves of perpendicular incidence is obtained for all
angles of incidence. From this analogy, we can see that
in the case of impact sound also, the flow resistance of
the blanket is effective in preventing lateral motion of
the air. Hence an air space without a blanket has a
higher stiffness, thus gives a smoother improvement.

From Eq. (11.3.14), it is seen that the improvement
of a floating floor is independent of the type of ceiling.
This is also in agreement with measurements taken j/.
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Furthermore, the improvement is independent of the strik-
ing mass. However, this statement holds only as far as
the point impedance of the floating floor Z1 may be con-
sidered as being large compared to the reactance of the
falling mass (wimo). For thin rigid coverings and high
frequencies, we have to add to Eq. (11.3.11) a second term
to obtain for the improvement of the floating floor

L= 240 log (f/fl) + 10 log [1 + (2rfmIZl) 2 ]

(11.3.20)

As in the case of the improvement of airborne sound
insulation by a separated, second partition wall, Eqs.(ll.3.14)
and (11.3.20) are valid only if they give values which are
not too high. However, the equations are useful for design
because the frequency region where they are valid is the most
important region.

There are several reasons for the deviation of
experimental results from Eq. (11.3.14). First, this for-
mula is derived on the assumption of an infinite ceiling
and a floating floor. Since the floating floor is care-
fully separated from the side 3walls, there is total reflec-
tion of bending waves at the sides. These reflecting waves
will also contribute to the mean sound pressure in the
receiving room. Furthermore, it seems that the tangential
motion in the elastic layer cannot be prevented at higher
frequencies. But the most usual and dangerous deviation
happens if there are rigid connections between the float-
ing floor and the ceiling, which may be called "sound-
bridges."

Improvement by a Floating Floor. With Sound-Bridges.
We now will consider the improvement of isolation by a
floating floor and how it can be decreased if point "sound
bridges are present 1./. Such more or less rigid bridges
may not only occur as an error during the construction of
a floating floor, they may also be a result of the con-
struction, as for example when the floor is laid on
i'ubber mountings. In all these cases there are two ways.
for the sound energy to pass from floor to ceiling. The
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first is that over the air space inside the fiberglas
blanket which is considered in Eq. (11.3.20). The second
is the path through the bridges. At high frequencies, the
internal impedance of the source (JOam) has to be con-
sidered for both ways. Therefore, the second term of
Eq. (11.3.20) remains unchanged.

Generally the expression for the improvement (actually
a deterioration by the bridges) may be written as

A L = - 10 l og (f l/ f ) + n LI k l A 12 
2.

i-l

+ 10 log [1 + (2i fmo/Z9) 2 ]

(11.3.21)

Here ri is the distance between the place of impact and
the ith of the n bridges and k, is the propagation para-
meter for a bending wave in the floating floor, which in
general is a complex quantity given by

kI = 2 (i - in/4)/h 1  (11.3.22)

Here A 1 is the length of the bending wave and n loss factor
which has been introduced in Eq. (11.2.59) but which also
may be defined by the measured attenuation per wave length.

The function 1T(klr) gives the ratio of the trans-
verse velocity of the floor at a distance r which would
be present without the bridge to the velocity of the floor
at the point of impact,

-f(klr) = v(r)/v(O) (11.3.23)
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Therefore, in all cases we have

]-(O) = (11.3.23a)

For an infinite floating floor without damping,•-would
increase as k1r increases

-T (k1 r) = ý/2/r klr exp - J(klr - 'r/4)

or

I-TI2  = 2/ir k1r (11.3.23b)

But the assumption of an infinite size is not as
valid in the case of the floating floor as it is in the case
of the ceiling. The floating floor is carefully separated
from the wall so that the reflection of bending waves is
total. The energy losses only occur during the propagation.
If these losses are high, as in asphalt floors, we may
neglect the reflections and set

M V 2 = (2/r k1 r) exp (-'YLklr/2) (11.3.23c)

If the loss factor is small, however, many reflections
must be taken into account. The resultant velocity will
be given by a statistical superposition of all the re-
flected waves. In this case 11112 becomes

I iT1 = 4 ce1 hl/Sw Y (ll.3.23d)

where S is the surface area of the floating floor, cLC is
the velocity of propagation for longitudinal waves an h1
the thickness of the floor.

The velocity at the distance rj, given by TMv(O), has
to be distinguished from the velocity vI which occurs if
a bridge is present, according to the formula

V, lv(O) - FI/Z1  (11.3.24)
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FIBERGLAS'BLANKET Z, T R FLOOR

,CEILING

FIGURE 31.3.4
Sketch of a floating floor separated by a
fiberglas blanket and a sound bridge from
the ceiling below. The various quantities
used in the analysis are shown in the figure.

Here Z is the point impedance of the floating floor, Z2
that of the ceiling and F1 is the transverse force acting
between the floor and the bridge. See Fig. 11.3.4.

The quantity in which we are interested is the
velocity v 2 at the foot of the bridge. This is related
to vy and Fl by

z12= Fl/v 2  (11.3.25)

A1 2 =V /V 2  (11.3.26)
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The first of these coefficients has the dimension of
an impedance and is,therefore, characterized by the
letter Z. Since the second is a pure number, a Greek
letter has been chosen. The double subscripts 12 indi-
cate the coupling between quantities before and after
the bridge.

For a short, prismatic bridge of the length i,
cross sectional area A, density p and Young's modulus E
we find

Z12 = 2 + J cc Ap (11.3.25a)

A12 - 1 + j D V Z2 /Al . (11.3.26a)

Then the denominator of the second term of Eq. (11.3.2)
becomes

ZlZ2
z1 2 +A12 Zl = (zI + z2 ) + j w•(Ap +-A-E-)

(11.3.27)

The details of the bridge appear only in this second term,
which increases with frequency. We wish to make this
term as large as possible. This means that we have to
avoid the minimum value for the term in the brackets that
occurs when the characteristic impedance of the bridge
equals the geometric mean of the point impedances of
floor and ceiling. That is, when

A IR. . (11.3.28)

This case is of importance for double wall con-
structions consisting of equal panels, where Eq. (11.3.28)
becomes

A V = Ap cL = Z. (I1.3,28a)

There it is easy to see that the sound energy from one
wall will be transmitted to the other most easily if the
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characteristic impedance of the bridge Ap cL matches the
point impedances of the plates Z1 . Avoiding this match-
ing does not necessarily mean that the bridge should be
as resilient as possible. If the bridge connects two
thin wooden panels of the thickness h, a wooden bridge of
cross sectional area A given by

A = 2.3 h 2  (11.3.28b)

would Just give the perfect impedance match, as may be
derived by comparison of Eqs. (11.3.28a) and (11.3.7). It
is better to mismatch Z1 and Z2 as far as possible. So
for example, Meyer found experimentally that with wooden
panels, heavy iron bridges gave the best sound insulation

In the case of floating floors, Z2 is so large that
mismatching occurs only with very resilient bridges. This
means that we may neglect pA in Eq. (11.3.27) and thus
have the quantity AE as small as possible. In this case,
Eq. (11.3.21) becomes

2.

AL - 10 log [ (f1 /f)
14 +T 2 1 ( + Z2) J 2~,A

L I(Zl1+Z 2) + wZ lZ2 /AE

+ 10 log [I + (2r fmo/Zl) 2 ] (11.3.29)

The more resilient the bridge becomes, the more the length
becomes comparable to the wave length of longitudinal waves
in the bridge and the formulas, Eqs. (11.3.25a) and
(11.3.26a), have to be replaced by the corresponding trans-
mission line equations.

Also we are interested in bridge constructions
which at present cannot be calculated at all. In these
cases we have to measure Z12 and A1 o. Usually Z can
be neglected compared to A1 2 Zl, so hat it is su.iicient
to measure A1 2 . This can be done easily by comparing
vI and v 2 with the same device and with any kind of
exciting force. But it should be remarked that A12 is
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defined in connection with a special ceiling Z2 only.

In this case Eq. (11.3.21) may be written

L= -10 log [(fl/f) 4 + Z/Z /A 1 2 Z1 12

+ 10 log [l + (2r fm/Zl) 2 ] (11.3.30)

Impact sound, as well as structure-borne sound in
general, not only excites one wall, but propagates through
the structure. Such vibrations are propagated with relative
ease and are not usually hindered by bends or changes in
cross sectional area of the structural member; but they
may be interrupted by vibration breaks consisting of
elastic layers. For a discussion of these matters, see the
work of Cremer 3.10,.3.11/.
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11.5 Transmission of Sound Through Cylindrical Pipes

The discussion of Sec. 11.2 of the transmission of
sound through walls is valid for curved plates if the ra-
dius of curvature is large compared with the sound wave-
lengths in both the air and the plate. But we have to
add a third term to the transmission impedance (see the
discussion on single walls in Sec. 11.2 for a concept of
transmission impedance) if the radius of curvature becomes
comparable with either of these wavelengths. This added
term is larger than the first two when the radius of curva-
ture is small compared with the wavelength, as is the case
in cylindrical pipes with small diameters at low frequencies.
Here the sound pressure inside the pipe is uniform over the
cross-section. The constant pressure inside tends to en-
large the diameter and gives rise to elastic restoring
forces on account of this tension. Then the transmission
impedance is a resilient reactance equal to

z- Eh (11.5.1)
a

Here a is the radius of the pipe and h the thickness of
its wall, E is Young's modulus and m = 2r x frequency;
we always assume that h << a.

In the ideal case that the pressure inside the pipe
is constant along the pipe, Young's modulus would have to
be divided by (1-p. 2 ) as in Eq. (11.2.38a). In this case,
axial contraction is hindered. But in practice axial
contraction is always possible; if the pipe is short, the
edges can move; or if the pipe is longer than the wave-
length of sound in air, the radial expansions and contrac-
tions of the diameter involve the necessary axial motion.
In practical cases, the difference between E and E/1-p. 2

is too small to be considered in practical calculations.

It is easy to show that the tension term given by
Eq. (11.5.1) is much greater than the inertia term. The
sum of both may be written

_1 Eh Eh 1 () 2 ]
Z- -- + jCM2 -N (11.5.2)

Mea jT-a L1
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Here

Wo = ca or fo = cI2wa . (11.5.3)

This is the angular frequency coo or the frequency of the
zero order mode of a ring of diameter 2a. The correspond-
ing motion of the pipe is mostly radial with only small
axial motion. Since this frequency is a characteristic
quantity for the behavior of the pipe, we may relate all
frequencies to it Py introducing the dimensionless fre-
quency parameter V given by

9 = f/f o (11.5.4)

For small 1), the tension term is 1/)2 times greater
than the mass term, this means that we expect the "trans-
mission loss" to be 40 log 1/7) higher than that given by
the mass law for normal incidence.

For a steel pipe of 4 in. diameter, the zero mode
frequency would be about 16,000 cps. Assuming a thickness
of about 1/8 in., the "mass law for normal incidence" would
ive at 1000 cps, TL = 46 db; but to this has to be added
8 db (40 log 1/2), so that the theoretical value of the

TL would be 96 db. Furthermore, we have to realize that
according to Eq. (11.2.9a) the radiating surface of such
a pipe is always small compared with the absorption power
of the receiving room. Let us assume that the pipe has a
length of 8 ft; its surface will be about 8 sq ft whereas
the absorption power of even a small room may be 80 sq ft.
According to the discussion in Sec. 11.2, this means that
10 db has to be added in order to get the pressure level
difference*. Finally, we must remember that the radiation
power of a pipe is not proportional to its surface area if
the perimeter becomes smaller than a wavelength. Taking
everything into account, the calculated pressure level
differences are so high that at 1000 cps, a sound pressure
of 100 db inside the pipe would not be heard outside and
at lower frequencies even much higher pressures inside

• Although Eq. (ll.2.9a) was derived under the

assumption of a large source room with statisti-
cally distributed sound waves it can be proved
that it is also valid for a source room small
compared to the wavelength.
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would not be audible outside. The amount by which the TL
of small pipes exceeds the mass law has not been studied
experimentally. But there is no doubt that practical
observations do not correspond to these sample calculations.
One of the reasons may be that the pipe is always fixed
to a wall with the possibility of transferring sound energy
to the walls which may then radiate it. Also, even if the
diameter is small compared to the wavelength, small asym-
metries will excite other modes with higher amplitudes.
If we now treat the case of a large cylindrical shell, we
will see that these other modes may offer much smaller
transmission impedances.

When the diameter 2a is large, the zero-mode frequency
will be in the middle audio range. For instance, for an
aluminum shell 7 ft in diameter, corresponding to an air-
plane structure, this frequency would be 770 cps. At this
frequency, the perimeter equals the length of longitudinal
waves in the shell. Since the corresponding velocity of
propagation c1 is about 15 times greater than the sound
velocity in aIr co, we have 15 wavelengths of airborne
sound along the perimeter and we may say that in this re-
gion the radius a is large in comparison to the wavelength.
Then the behavior of the shell will be similar to that of
a plane wall. Therefore, we have to add a term repre-
senting stiffness against bending as in Eq. (11.2.48);
this would change Eq. (11.5.2) to

Z-r = Jom - J(Eh/a 2) - J(B3/cCo 4 ) sin4

= J2wfm [1 _ (f/f)2 _ (ff c)2 sin24  ]

(11.5.5)

Thus, the critical frequency fc, defined by Eq. (11.2.47)
appears as a second characteristic frequency for the shell;
in terms of

Vc = fclfo = -2 (co 2a/CL 2h) (11.5.6)
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FIGURE 11.5.1

Coordinate system used in the analysis of the
transmission of sound through a cylindrical
shell.

appears as a new parameter. For the example of a 7 ft
aluminum shell, we get - = 2 if h is 0.2 in. and V c= 0 . 5

for h = 0.8 in. The angie 7-is the angle between the
perpendicular to the shell, i.e., the radial direction,
and the direction of the incident wave as shown in
Fig. 11.5.1. But now we have to consider another angle, P.,
which determines whether the propagatiop for 2ý-= 900 in-
volves an axial or a longitudinal motion. For the first
case, P is 900 while in the second, P = 00.

It is simple to demonstrate that the second term
in Eq. (11.5.5) must depend on this angle. If we curve a piece
of paper into a cylindrical shape, we see that it is very
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easy to bend the cylinder in a direction corresponding
to A = 00, but that it is very difficult to bend it in
any plane containing the line P = 900. Omitting only a
small region of nearly perpendicular incidence given by
sin2 -z< 8(1 +yu)(co/CL) 2 , we can include this dependence
by multiplying the tension term of Eq. (11.5.5) by sin4

to give

Z j an- J Eh sin4• - s4
2 sin 4 -

cu c o0

j 2rfm [i s in24 sin) 4V 2 -(/nc sn4 ]

(11.5.7)

Again we are especially interested in the conditions of
vanishing impedance. We may plot the corresponding (W9 , 7))
lines (contours of equal TL) with 0 as parameter on a
(log 0 , sin2 Z7-) plane as was done in Fig. ll.2.%. The
results are given in Figs 11.5.2 and 11.5.3 for *Vc =2
and V c = 1/2 respectively. For sin2  sin2 -Lc/2
and, therefore, for i)c > 2, two different types of
trace matching appear. (In Fig. 11.5.2 this is the case
except for the curve P = 900 in the region sin2 1Y>0.8).
One is the trace matching for bending waves already dis-
cussed in the case of plane walls. This is independent of
Sand is given by Eq. (11.2.46) with new parameters given

by

S= 1c/sin 2 Z- . (11.5.8)

This situation occurs only above i)= }c or f = f

The second type is a trace matching for tensional
waves. Here the' two first terms of Eq. (11.5.7) are equal.
This is independent of 2-•but dependent on P by the relation

V = sin2 P . (11.5.9)

This occurs only below ) = 1 or f = fo0
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For a given direction of the incident soundwe may say
that the sound insulation of the shell is stiffness-controlled
below V = sin2 P, that it is mass-controlled in the region
sin 2 A <-d < K)c/sin 2 2Yand that it is again stiffness-con-
trolled above ic/sin 2 ,5-.

If •c < 2, as may be the case for thicker shells, the
two kinds of trace matching cannot be separated further and
the lines for Zq- = 0 continually pass over from the one
limiting case to the other (see Fig. 11.5.3 except = = 150).
Here for special values of O-and , given by sin2 Zý sin 2 871V/2,
the wall is always stiffness-controlled; at low frequencies

it is controlled by the stiffness for tension and at high
frequencies by the stiffness for bending.

For a given direction of the incident sound we may also
calculate the transmission coefficient T-by putting
Eq. (11.5.7) into Eq. (11.2.20). Here Eq. (11.2.20) has to
be considered as an approximation because it was derived
for plane waves whereas here we have cylindrical waves in
the radial direction. But the difference is important
only at low frequencies. Also, here the region of grazing
incidence must be excluded. But for all other cases we may
write 11 f02sn4 f2si4a.\

[TL].,p 10 log 1 +fwfm cos 2 fo

(11.5.10)

There is seldom a preference for special angles of
incidence. In practice we have mostly a distribution of
sound over various angles of incidence. Then the result
for a given frequency region essentially depends on whether
or not an angle for trace matching appears. If it does,
most of the transmitted sound energy is due to this special
direction. Furthermore, the result will depend on the damp-
ing of the shell and also on the size of the shell. In the
case of a plane plate, all this happens above f only. Here,
for a curved shell, it also happens at frequencies below fo
with the result that the TL will be much lower than the
mass law would predict. The proper value will depend on
the maximum transmission coefficient and on the bandwidth
as in Eq. (11.2.64).
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When averaging over the various angles of incidence,
we have again to take into account the fact that a portion
of the wall S will intersect only the area S cos 15-of the
wave front, whereas with respect to ý no such weighting
factor appears. Also with respect to the probability of
a special direction, all P will have the same probability.
Therefore, no special weighting factor is required but if
it can be assumed that the sound inside will be distributed
over all directions equally the region between 2i and d z9-
has to be multiplied by sin 72 . But in the case of a
cylindrical enclosure, two further aspects render thepro-
blem more difficult. First, not all combinations of 0-and
,6 appear inside a given cylinder. It is easy to under-
stand that in the tangential direction around the perimeter,
the periodicity must be a proper fraction of the perimeter.
A second, not so simple condition, holds in the radial
direction. From both it can be derived that in the above-
mentioned case of a cylindrical shell of 7 ft diameter,
at 500 cps there exist only 17 different pairs of angles
i and,9 . Furthermore, these angles are not equally
distributed over all the possible directions. This is a
consequence of the well-known fact that each curved wall
results in focusing of the sobUnd. If the sound source is
located in the center we will get perpendicular incidence
for P = 0, i.e., 25- = 00 only. If the source is located
near the perimeter, the incidence will be grazing. It can
be seen geometrically and may be proved more rigorously
by the wave theory that a really tangential sound propaga-
tion, i.e., 19= 900 for S = 00 is possible only in the
limit of infinitely high frequencies. On the other hand,
the focusing qualities of a cylinder will be destroyed if
there are deviations from the ideal geometric form and
especially if there are any kind of obstacles inside.
Therefore, it is hazardous to base extensive calculations
on the angular distribution of sound in a perfect cylinder.
To the same degree of approximation, we may assume a
uniform distribution of angles of incidence as in the case
of a plane wall.

If we assume a statistically uniform distribution of
angles of incidence, the average is given by

r/2 1
2 -cd. (sin2 •) • (21.5.11)

"-random = r

0 0
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For 1c > 2, i.e., for thin walls and a pipe of large
diameter, above the critical frequency qtbecomes in-
dependent of P and the results are the same as in the case
of the plane wall. Therefore, we may use the Eqs. (11.2.58)
and (11.2.65) in this region or Figs. 11.2.10 and 11.2.11.

In the mid-region 1 4- < -c we can expect the
mass law to hold if the frequency region is sufficiently broad.

For V'< 1 we may calculate the mean transmission
coefficient with respect to P in the same way as we did
for the case of bending wave trace matching. In regard to
29, it may be reasonable to choose the mean value of
zj-= 450. Then we get for i < 0.8

a

[TL] 4 5 , random (=c 10 log log (7- )2) + 1.5

(11.5.12)

where ac is the value given by Eq. (11.2.51). Therefore,
the first term which corresponds to the 00 mass law at the
zero mode frequency represents one half the transmission
loss. Thus we see that the transmission loss will be, in
general, smaller than would be calculated using the mass
law. Furthermore, we see that the frequency response is
rather flat. In Fig. 11.5.4, [TL] 4 5 , random is plotted
against frequency for the region
0.05 /--d< 0.8 for different values of ac/,4 c. As in
Fig. 11.2.10, the practical value of these curves is doubt-
ful since even a small amount of damping will change the
results.

Introducing energy losse/s by means of a loss factor
as defined in Eq. (11.2.59), we have to'add to Eq. (11.5.•)
a further term

[TL] 4 5 , random = 10 log (ac/v)c) + 5 log (-)2) + 1.5

+ 10 log (1 + 0. 7 lylac /Vc)

(11.5.13)
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In Fig. 11.5.5, the corresponding values of TL are
plotted as a function of V for various values of ac/1)c
as in Fig. 11.5.4 and for a loss factor of ý = 0.01
(which may be assumed in most practical cases even if
there is no special material used for dampingj. For
small ac/Vcthis amount of damping does not essentially
alter the results shown in Fig. 11.5.4. For high values
of ac/1)/c, generally if 0:71 acV/'c > 4 , we may
approximate Eq. (11.5.13) by

a20 log (Cc) + 5 log (ý3_7) + 10 log[TL] 45,random 2c

(11.5.14)

Here we see that doubling the loss factor increases the
TL by 3 db. Therefore, it would be advantageous to in-
crease the loss factor of a shell for both high and low
frequencies.
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12.1 Specification of Sound Absorptive Properties

In connection with certain problems in the control
of airborne sound, and in the special problems of sound in
rooms, the acoustical designer has to deal with the pro-
perties of sound absorbing materials. It is necessary,
therefore, to describe briefly the physical principles of
absorbing materials, the manner in which the physical
properties and the sound absorbing properties are measured,
and in a general way, some of the applications of the data
which describe the materials.

In this limited discussion, it is possible to describe
the significance of several of the concepts only in a quali-
tative way. The reader who desires a fuller knowledge of any
of the topics touched on in this section should consult more
extensive discussions which have been published 1.1, 1.2,
1.1, 1.4/.

The Several "Coefficients" for an Acoustical Material.
The energy-absorbing ability of an acoustical material at a
given frequency is most commonly specified by an "absorption
coefficient". The widespread use of such a quantity suggests
that this single measure is sufficient to indicate the per-
formance of the material in all situations. However, this
is not true. Detailed acoustical theory shows that the
specific acoustic impedance has much wider applicability in
describing the material. This quantity, in general a
complex number, varies with frequency and may vary with the
angle of incidence of the sound. Under special conditions
some real number (a "coefficient") may describe the behavior
of the material. Actually there are several different
coefficients, each useful in special circumstances as a
measure of energy absorption. Each is derivable from the
specific acoustic impedance. Since the complex specific
acoustic impedance contains two parts, it cannot, in general,
be calculated from any single value of any of the
coefficients.

Before discussing the energy-absorption coefficients,
it will be helpful to review the behavior of a simple oscil-
lator. A "simple oscillator" may be a mechanical system
equivalent to a mass, a spring, and a damping element, an
analogous simple electrical circuit or a confined volume of
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air in which one of the natural sinusoidal acoustical vibra-
tions has been excited. In any case, elementary theory shows
that the energy of vibration of the simple oscillator decays
exponentially with time when the system is in free vibration
(no external driving force). Thus, if the instantaneous
energy of vibration is W, and if the initial energy of vibra-
tion is W0 , the energy at any time t follows the equation:

W =W e -2kt, (12.1.1)

where k is the damping constant. By differentiation of
this relation, the definition of the damping constant is ob-
tained in the form:

k = _1 dW/dt (12.1.2)2f W""

Ordinarily a sound source in an enclosure excites
more than one mode of acoustical vibration. When a sound
source is turned off, each mode which has been excited acts
as a simple oscillator at its natural frequency. In general
each mode has a different decay rate, but it is found that
in a rectangular enclosure there exist three groups of modes,
within each of which the damping is roughly the same for all
modes. The mode groups are designated as axial, tangential,
and oblique. It will be seen later that these designations
refer to the extent to which the wave motion of a particular
mode involves tangential or oblique incidence on the various
walls.

The.detailed wave theory shows that the damping rates
of the various modes can be related to quantities called
wall coefficients. The wall coefficients depend upon the
size and shape of the enclosure, the distribution of the
absorbing material, and the mode of vibration which is ex-
cited, but in certain cases the special forms of the wall
coefficients can be regarded as intrinsic properties of the
absorbing material.

The normal wall coefficient of a surface, 0.p, is
defined as eight times the real part of the admittance ratio
(impedance and admittance are discussed later in this section).
This quantity measures, for a wall which is not highly absorb-
ing, the damping of waves which meet the wall at normal or
oblique incidence.
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The grazing wall coefficient a t, is a measure of the
amount by which a wall in a chamber of regular shape contri-
butes to the damping of an acoustical vibration consisting
of wave motion "parallel" to that wall. For a relatively
nonabsorbent wall, however, there exists in place of the
grazing coefficient a supplementary wall coefficient, which
in the case of a rectangular enclosure, depends upon the
properties of the opposite wall. These coefficients can be
computed from the acoustic impedance. When both walls of a
pair are not highly absorbing, both the grazing coefficient
and the supplementary coefficient are nearly equal to O'/2.
(See Ref. 1.1 for a discussion of limits of validity of-
these several coefficients.)

The wall coefficients above are related to the damping
of the energy of an acoustical mode of vibration in an en-
closure. Another set of coefficients, which will now be
described, has to do with the fraction of incident power
which is absorbed when a free sound wave in space strikes an
absorbing surface. There is no general relation between
these absorption coefficients and the wall coefficients given
above, but it will be shown that under special conditions
the absorption coefficients are related to the rate at which
the total energy of a group of modes of vibration in an
enclosure decays with time. This leads to the very restricted
reverberation theory of elementary acoustics, and to the
ordinary procedure of characterizing an acoustical material
by an absorption coefficient as measured in a "reverberation
chamber".

The basic quantity in the absorption of a single wave
at a wall is the free-wave absorption coefficient, OL (@)
This coefficient is simply the fraction of the power in the
wave, incident at an angle 0, which is absorbed by the wall.
The notation indicates that the free-wave absorption coeffi-
cient is a function of the angle of incidence, 0. The con-
cept of absorption as a function of angle of incidence (the
angle between the normal to the absorbing surface and a line
perpendicular to the wavefront striking the surface) is valid
in practice for angles as great as 800. However, the concept
of a free-wave absorption coefficient breaks down for larger
angles of incidence, because of distortion of the wave by the
absorbing boundary*.

The case of Q = 900 is meaningless in any case, because a wave
cannot travel absolutely parallel to a surface having absorption;
the wave fronts are curved by continuous flow of energy into the
surface. For this reason, quotation marks were used above in
statements concerning waves traveling "parallel" to a wall.
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The free-wave absorption coefficient can be obtained by a
direct measurement of the amplitudes of incident and re-
flected waves, or by techniques which depend upon the effect
of an absorbing sample at the end of a tube in which "stand-
ing waves" are set up.

The normal free-wave absorption coefficient, denoted
by O , is the value of the free-wave absorption coefficient
in the special case of normal incidence (9 - 0°). Therefore,

o is the fraction of incident power which is absorbed
when a free plane wave is normally incident on the absorbing
surface.

Finally, when the power incident on the absorbing
surface is carried by an infinite number of plane waves uni-.
formly distributed through all possible angles. The fraction
of the power which is absorbed is defined as the statistical
absorption coefficient otstat- For reasons which will be
given, this coefficient is sometimes called the Sabine absorp-
tion coefficient, and at high frequencies this coefficient
is closely equal to the chamber absorption coefficient
ordinarily reported by the manufacturers of acoustical absarb-
Ing materials. The statistical absorption coefficient is
simply a suitably averaged value of the free-wave absorption
coefficient, which may be defined by the equation:

Q~stat = 2 f 0ý(0) cos 0 sin 0 dG. (12.1.3)

Relation of the Statistical Coefficient to Reverberation.
W. C. Sabine, in the earliest systematic work on sound waves
in rooms, suggested on the basis of a series of experiments
that the total sound energy decays exponentially in the "rever-
beration" which occurs after the sound source is turned off L/
The damping constant of the exponential decay is proportional
to the average "sound absorption coefficient" of the walls.
A mathematical analysis shows that the sound absorption
coefficient which is important in reverberation is identical
with the statistical coefficient defined above, if certain
very special conditions are realized. These conditions are,

1. Only a small fraction of the total energy is lost
in the time required for sound to travel the greatest dimen-
sion of the enclosure.
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2. The sound energy in the room is diffuse, so that
for each wall, all directions of incidence are equally
likely during the reverberation process.

3. The energy density in the enclosure is substan-
tially uniform, so that the transfer of energy to the walls
may be considered a continuous process of absorption of a
random group of free waves.

If these conditions are realized, it is readily shown that
the rate of loss of sound energy is proportional to the
average value, for all the wall surfaces of the statistical
absorption coefficient or the Sabine absorption coefficient.
The equation for the decay of the total sound energy is

c a St

W - W0 e W (12.1.4)

where S is the total wall area, V is the volume of the enclo-
sure, c is the speed of sound, and 5 is the Sabine absorption
coefficient averaged over all walls according to the relation

3s (c S1 + 2s2 + 3S3 + ........ ). (12.1.5)

Here Sl, S2 , S 3 . . . are areas in which the statistical
absorption coefficient has uniform values Ol' 2, *3 • •
The quantity a S is called the total absorption, and is in
units of Sabins when its dimensions are sq ft. That is, one
Sabin equals the absorption of one sq ft of perfectly
absorbing surface, under the special assumptions of the Sabine
picture.

By comparison of Eq. (12.1.4) with (12.A.1), the decay
process can be described by an effective damping constant

K - c o S/8v. (12.1.6)

This is not really the damping constant for any single
oscillator; the detailed wave theory shows that this damping
constant is only an average of slightly differing values for
all the individual modes of vibration, even when the very
special assumptions behind Eq. (12.1.4) are justified.
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The customary way of stating the result of the simple
reverberation theory is in terms of the reverberation time
T, which is defined as the time required for the total-
soundenergy to decrease to 10-6 (one millionth) of its ori-
ginal value. In units of feet and seconds, the reverberation
time formula as obtained from Eq. (12.1.4) is

T = 0.049 v/ Ms. (12.1.7)

A somewhat different form of the reverberation for-
mula, due to C. F. Eyring, has proved to be more satisfactory
than (12.1.4) in cases where O is larger than one tenth. The
conditions assumed in Eyring's derivation are the same three
already stated, except that now the sound energy is imagined
to exist in discrete wave trains. The energy in a wave
train remains constant as the train travels a mean path 4V/S
between reflections, and decreases discontinuously at each
reflection. Since a fraction (1 - U) of the energy is re-
flected in each encounter and the average time between
reflections is 4V/cS, the intensity at a time t is propor-
tional to (1 - ý) Sct/4V. This relation can be written in
the form of an exponential function as in Eq. (12.1.1), or
the result can be written as a reverberation time formula
as shown in Eq. (12.1.8) with units of feet and seconds.

T = 0.049 V/[-S ln(l -&)] (12.1.8)

The average absorption coefficient is defined, as before, by
(12.1.5). Equation (12.1.8), although sometimes seriously
in error when the absorption coefficient varies greatly be-
tween different wall areas, is the basis for most practical
calculations for sound decay in rooms. Equations (12.1.7)
and (12.1.8) give essentially identical results when 5- is
less than 0.1.

Reverberation Chamber Measurement of Absorption Coeffi-
cient. Equation (12.1.73 or (12.1.87)*i•-cmmonly used to
derive values of the absorption coefficient from the experi-
mentally measured reverberation time in a specially designed

.
The two equations give the same result for the values of
ordinarily used in these measurements.
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room known as a reverberation chamber. Typically, a rever-
beration chamber is an enclosure of 10,000 to 20,000 cu ft
volume and with walls of very small absorption so that the
reverberation time is long (preferably greater than 10 sec
when no absorbent sample is present). Measurements of the
reverberation time with and without a sample of absorbing
material in the chamber give sufficient data to determine
both the effective absorption due to the walls and the en-
closed air, and that absorption due specifically to the
sample. Since the finite patch of absorbing material which
is used as a sample has more absorption per unit area than
would a complete wall covering (because of diffraction effects),
suitable empirical corrections are used to derive effective
values of the absorption coefficient for a large area. Fur-
ther references to the measurement method are given in Ref.1.2.

The absorption coefficient derived from these measure-
ments is, by definition, the chamber absorption coefficient.
Details of the testing procedure must be stated in order to
specify a chamber coefficient completely. Various artifices
are used in reverberation chambers to produce random direc-
tions of sound travel (i.e., a diffuse sound field), with the
aim of producing conditions which will allow the chamber co-
efficient to be identified with the statistical absorption
coefficient. It is impossible, however, to obtain a diffuse
sound field in the required sense unless the smallest chamber
dimension is many times a wavelength. For this reason it
appears that the chamber coefficients which are commonly
reported are a close approximation to the statistical coeffi-
cient only for frequencies of 2,000 cps and higher. The
chamber coefficient at lower frequencies becomes more nearly
equal to the normal wall coefficient, Q , which governs the
decay of most of the acoustic modes of vibration in a room
where the largest dimension is only a few times the wave-
length.

It appears that the departure from diffuse conditions
in the reverberation chamber at the lower frequencies is
responsible for a disagreement between calculated and measured
values of the low-frequency reverberation time for large
auditoria or other enclosures of several hundred thousand cu
ft volume, when the chamber coefficient is used for calcula-
tions by means of Eq. (12.1.8). The sound field in a large
auditorium or other large room of irregular shape approaches
the diffuse condition at all audio frequencies. The observed
reverberation time is longer than that calculated on the basis

WADC TR 52-204 167



of the chamber coefficient. This is because the chamber
coefficient approaches (Yp at low frequencies, and. a is
generally larger than the quantity G•stat which shoulR be
used in Eq. (12.1.8) for diffuse sound fields.

Table 12.1.1 shows a comparison of the statistical
coefficient and the chamber coefficient for one particular
absorbing material. The effects Just mentioned are apparent.
The statistical coefficient was calculated from acoustic
impedance data. The chamber coefficient is the result of
measurements of the same sort as those reported by the
Acoustical Materials Association 1.6 . This organization
publishes sound absorption data for commercial materials, as
measured by a carefully standardized reverberation chamber
technique. The large discrepancy at 512 cps is found in
other data comparisons and is probably a systematic effect
in the chamber measurements.

TABLE 12.1.1

COMPARISON OF STATISTICAL ABSORPTION

COEFFICIENTS AND AMA CHAMBER COEFFICIENTS
(material: 10.5 lb/ft3 PF Fiberglas, 4"

thick, hard backing)

Frequency Statistical AMA Chamber
Coefficient Coefficient

cps C•stat

128 0.53 0.66

256 0.69 0.69

512 0.78 0.99

1o24 0.82 0.88

2048 0.90 0.90

4096 0.93 0.93
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Comparison of Statistical Coefficient and Wall Coeffi-
cients. The statistical absorption coefficient applies to
problems of sound absorption only where a diffuse sound field
exists. In this special case Eqs. (12.1.7) or (12.1.8) may
be used to compute the reverberation time. These equations
infer that the absorption coefficient of the acoustical
material at a given frequency is independent of the shape
of the room, of the position of the material, and of the
sound source in the room.

The detailed theory of wave acoustics, which has been
worked out for enclosures of simple shape, shows that in
general the acoustical damping produced by absorbing material
in a room depends upon the material, the shape of the room,
the position of the material in the room, and which modes of
acoustical vibration in the enclosure are excited by the
sound source. The Sabine assumptidns represent only a spe-
cial limiting case, which can be approached when the enclo-
sure (or the arrangement of absorbing patches within the
enclosure) is irregular, and when the wavelength is very
small compared to the shortest dimension of the enclosure.
Also, the general wave theory indicates that, because the
damping constants differ for the various groups of vibrational
modes, the decay of the total aooustical energy in the enclo-
sure is not a single exponential function, and the reverbera-
tion phenomenon cannot be described adequately by a single
reverberation time except under the special Sabine conditions.

The distinction between the two approaches may be
illustrated for the case of a rectangular enclosure. Let the
dimensions of the enclosure along the x, y, and z axes be
Lx, Ly, and Lz. According to wave theory, the frequencies
of free acoustical vibration of the enclosure are given
approximately by

f(nxnynz) = (c/2) {(nx/Lx)2 (ny/L2 2(nzLz)2

(12.1.9)

where each n may be equal to any integer (including zero).
The value of nx is equal to the number of pressure maxima
between the walls x - 0 and x = Lx in the wave pattern of the
vibration; for nx = 0, the pressure is nearly uniform in the
x direction. The other n's have corresponding interpretations.
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Oblique waves correspond to the case of none of the n's
equal to zero. Tangential waves correspond to one n equal
to zero; for example, for nx = 0, the wave motion is tan-
gential (grazing) with respect to the x walls (the walls at
x = 0, x = Lx). Axial wves correspond to two n's equal to
zero; for example, for nx = 0, ny = 0, the wave motion is
grazing with respect to both x and y walls.

The damping of any one vibration in the rectangular
enclosure, according to wave theory, is computed by using
in Eq. (12.1.6), in place of the Sabine absorption OCS, the
room absorption factor, aN, defined by Eq. (12.1.10). It
is assumed that each wall has uniform acoustical properties.

N = LyLz (O~l+ 0x 2 ) + LxLz(%l + Q+C2 ) + LxLy(O 1 + OX2)

(12.1.10)

The Oý-'s are the wall coefficients. Subscripts xl, x2 refer
to the walls at x = 0 and x = Lx respectively, and so forth.
While considerable calculation may be required to find the
CC's from acoustic impedance data for the walls, simple

approximations hold when the walls are "hard".* For a room
with hard walls, each Cl-for a wall where the wave motion is
obliquely incident is approximately equal to the normal wall
coefficient CE-, and each C for a wall subject to grazing
incidence is equal to the grazing wall coefficient, which
in this case is approximately OC/2.

For a numerical example, consider an enclosure having di-
mensions Lx,Ly,Lz equal respectively to 10,15, and 20 ft, with
a freely decaying acoustical vibration in the mode nx = 0,
n 1 1, nz 1 1. According to Eq.(12.1.9), the frequency of
this vibration is approximately 46 cps (using c = 1100 ft/sec).

A "hard" wall is one for which the specific impedance
ratio is greater than twice the length of the rpom in
wavelengths, measured perpendicular to that wall; all
ordinary acoustical tiles on massive backings may be
considered hard below 200 cps in rooms nQt larger than
20' in any direction.
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Let the normal absorption coefficient for each wall be 0.05
at this frequency. The d's in Eq. (12.1.10) are then each
equal to 0.05 except that grazing incidence occurs on both
of the 10 x 15 ft walls, and the • value for each of these
is therefore 0.025. The room absorption factor aN from
Eq. (12.1.10) is 50 ft 2 . This value can be used in place of

S in Eq. (12.1.6) to obtain the damping constant. The
value of the Sabine quantity of UtS is 65 ft 2 ; hence appre-
ciably greater damping would be realized under the Sabine
conditions than for the case considered here, in which the
(0,1,1) mode Is excited. The discrepancy is more severe if
only the 15 x 20 ft ceiling is absorBtive; then aN is 7.5 ft 2

and &S (the Sabine factor) is 15 ft . In the hard wall
approximation, there is no disagreement between the wave
theory and the diffuse-room reverberation formula for oblique
modes. Thus, in practice the oblique modes decay most rapidly,
at roughly the rate given by the Sabine relation, and leave
the axial and tangential vibrations dying out at slower rates.
This effect is especially pronounced when all the absorbing
material is on one surface.

When the hard-wall approximation is not introduced,
the complete wave theory indicates further effects of the
position of the material and the nature of the excited modes
upon the damping. For example, the effects of opposite walls
are not necessarily additive. The presence of a soft wall
may result in a concentration of the acoustical energy in the
end of the room near that wall. This in turn increases the
effectiveness of the soft wall as a sound absorber, so that
the normal wall coefficient for a soft wall may be greater
than unity.

The Specific Acoustic Impedance and Related Quantities.
A measure of the acoustical properties of a surface which has
more general application than any of the' "coefficients" is
the normal specific acoustic .impedance. This quantity is
defined by the relation

z = r + Jx = p/v, (12.1.11)

where p is the acoustic pressure at the surface, and v is
the resulting velocity component normal to the surface of air
particles Just in front of the surface. Ordinarily p is in
dynes/cna2 and v in cm/sec. The resulting unit for z is called
a rMl. The acoustic pressure is the sum of the instantaneous
pressure produced by an incident acoustic wave and of the
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instantaneous pressure of any reflected wave which
may be set up.

The normal specific acoustic impedance is independent
of the angle of incidence of the sound if there is no effec-
tive wave propagation behind the surface in a direction
parallel to the surface. This requirement means that such
wave motion must be highly attenuated or have a velocity
much smaller than the velocity of sound in air; this is the
condition of "local reaction" discussed in Sec. 12.2. It
has also been shown experimentally that z is practically
independent of the incident angle for materials representa-
tive of commercial acoustic tiles 1.-7/

The impedance is usually a complex number. The complex
representation, which has meaning only for sinusoidal signals,
has the same significance as that used in alternating current
theory. Thus, the real part of z is the ratio to v of the
component of p which is in phase with v, while the imaginary
part of z is the ratio to v of the portion of p which is 900
out of phase with v. The real and imaginary parts of z, r
and x, are respectively the normal specific acoustic resis-
tance and the normal specific acoustic reactance. The adjec-
tive "normal" will be omitted except where there is a possi-
bility of confusion with some impedance not concerned with
the normal component of particle velocity.

The specific acoustic impedance for a perfect absorber
of plane waves (or for an infinite body of air, which is
effectively a perfect absorber) is Pc, where p is the density
of air (Fig. 3.1) and c is the speed of sound. It is often
convenient to express z in units of 9c. The dimensionless
quantity obtained in this way is called the specific acoustic
impedance ratio denoted by

zzý c 9 + J X•

The reciprocal of the specific acoustic impedance is
the specific acoustic admittance, y. The reciprocal of the
specific acoustic impedance ratio is the specific acoustic
admittance ratio, ý m l/& - + jk. The quantityA( is the
specific acoustic conductance ratio, and k is the specific
acoustic susceptance ratio.
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Several methods for the measurement of the specific
acoustic impedance are described in the literature 1.2/.
All the methods have to do, in a general way, with measuring
various aspects of the system of incident and reflected waves
which is set up when an acoustic wave is incident on the test
surface, either in open space or in an enclosure. Ordinarily
acoustic impedance measurements are made on samples not
larger than one sq ft; usually the samples are much smaller,
particularly if measurements in a standing-wave tube are to
be made to several thousand cps.

Because of the limitations on sample size, an averaging
problem arises in connection with materials having large-
scale variations in structure. Also, with small samples it
is difficult to reproduce any kind of backing other than
that of an effectively rigid wall. In the techniques most
commonly used, the sample is cut to fit snugly within the
end of a containing tube. It has been shown that materials
having a very light skeleton (not heavier than about 2 lb/ft3)
must be treated with great caution in tube mountings, because
the clamping effect of the walls hinders the ordinarily
appreciable motion of the skeleton in response to the sound
wave and seriously changes the impedance. When the above
difficulties are not important, impedance measurements can
be made with laboratory apparatus to within 3 per cent on
acoustic tiles and blankets. The angle of incidence is 00
in most impedance measurements.

Relation Between Impedance and Absorption Coefficients.
For surfaces which can be characterized by a normal impedance
independent of angle of incidence (this includes ordinary
acoustical tiles and blankets with hard backing), the relation
between impedance and free-wave absorption coefficient is
simple. This relation can be derived by setting up expressions
for incident and reflected waves, and imposing the condition
that the phase and amplitude relations between the waves shall
be such that the relation between total pressure at the surface
and the normal particle velocity is just that corresponding
to the specific acoustic impedance. It is then possible to
compute the difference of intensity of the incident and re-
flected waves, and to obtain the absorption coefficient, which
is the fractional loss of intensity. In this way, it is found
that the free-wave absorption coefficient, where the angle of
incidence as measured from the normal is Q,
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4•cosQ

( k + (.+ 1Cos " (12.1.12)

where 4 and k are the real and imaginary parts of the
specific acoustic admittance ratio. For a wall having an
acoustic impedance several times pc, so that j 4 + Jkl <<1,
it follows from this relation that the normal free-wave
absorption coefficient (9 = 00) is simply equal to 44.

The method for computing the statistical (Sabine)
absorption coefficient from CL(Q) has been shown in
Eq. (12.1.3). When the indicated averaging process is
applied to (12.1.12), it is found that the statistical
coefficient is given by:

ccstat = 8( -•In[l + 42t +] + 2__2 ] tan- •4k

This relation is derived for the case in which -q is
independent of angle of incidence. Figure 12.1.1 is
derived from this equation but it reads in terms of im-
pedance rather than admittance. When values of the real
and imaginary parts of the specific impedance ratio are
available, this chart gives the statistical coefficient
directly. Note that a surface must have a resistive
impedance of almost 1.6 pc to give a statistical absorption
coefficient of 0.951, which is the largest possible value,
whereas the impedance must be pc to give the normal free-
wave coefficient, (00), its largest possible value (unity).
This difference represents an averaged effect of the varia-
tion of CL (Q) with angle of incidence.

FIGURE 12.1.1

The statistical absorption coefficient, " 1stat in terms
of the real and imaginary parts of the normal specific
acoustic impedance ratio . It is assumed that the normal
impedance is independent of angle of incidence.
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Behavior of Acoustical Materials in Terms of Their
Physical Structure. While the normal specific impedance
is a quantity of wider applicability than any of the coeffi-
cients, the physical structure parameters of the material
sometimes have even wider applicability than the specific
impedance. For materials whose acoustic behavior is readily
subject to analysis, a knowledge of several structural
parameters permits the calculation of the impedance for any
thickness of material, subject to a variety of backing condi-
tions, and for any angle of incidence, even when the
impedance varies with angle. Since the structure parameters
can be measured simply, we can determine the acoustical
behavior of a material with a minimum of experimental effort.
Moreover, working from the basic physical properties of
material sometimes makes it possible to derive much more
useful design equations or charts, showing the complete
frequency behavior of a sound-reducing structure in terms
of a few simple quantities. An example of this is found in
Sec. 12.2, in the discussion of a duct lined with a porous
material.

Considerable published material is available for the
calculation of acoustical properties from structural con-
stants 1.1, 1.2, 1.3, 1.8_, 1.9_ The present discussion will
be restricted to the simple case of an isotropic porous
material with a rigid skeleton and mounted on a rigid backing.
It will appear that the important parameters are the porosity
(the fraction of the total volume which is occupied by air),
the structure factor (related to the increased effective
inertia of air which is accelerated in small passages), and
the flow resistance.

The porosity can be obtained from an experiment which
involves finding the apparent compressibility of the air
in the sample. Because the solid is virtually imcompressible,
the specimen acts like a volume of air in which the modulus
of compression is 1/h times the true compressional modulus
of air, where h is the porosity. For practical materials,
h is at least 0.7 and is usually not less than 0.9. The
flow resistance of a sample is obtained by direct measure-
ment of the pressure drop across the sample when air is
forced at a known, steady rate through a slab of known area
and thickness. The result is usually reduced to the specific
flow resistance (rf) (rayls per cm thickness). This is
numerically equal to the pressure drop associated with an
air flow of one cm3/sec through a sample of area one sq cm
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and thickness one cm (sometimes specific flow resistance
is reported in rayls per inch of thickness). The structure
factor, the exact definition of which can be obtained from
Eq. (12.1.15), must be found from an experimental measure-
ment of impedance or of propagation constant in the material.
This does not discourage the use of this approach because
(1) the structure factor ordinarily does not vary rapidly
with frequency, so that extensive measurements are unneces-1
sary; (2) it is not necessary to know the structure factor
in order to compute the impedance of a rigidly backed layer
which is thin compared to a wavelength.

The theory of the absorbing layer gives the surface
impedance in terms of the propagation constant, the char-
acteristic impedance for waves traveling in the layer, and
the thickness. The case of perpendicular incidence will be
considered here, since it is an experimental fact that the
result is substantially independent of angle for most porous
layers. Suppose that a sinusoidal pressure variation at the
surface of the porous layer sets up plane waves in the layer,
traveling normally to the surface. The pressure in the wave
entering the material is proportional to exp (-Jk x), where
distance is measured from the surface into the lay'er, and
kI is the propagation constant which is to be found. The
layer thickness is t. At the backing (x t) a reflected
wave is set up. The ratio of the pressure in the reflected
wave to that in the incident wave, at x = t, is defined as,
exp (2 7r). Then the reflected wave must have pressure pro-
portional to exp (2 Y + Jk x - J2klt). It is desired to
find the specific surface impedance, which is the ratio of.
pressure to particle velocity at x - 0. The total pressure
at x = 0 is proportional to 1 4 exp (2 V- j2klt). The
particle velocity at the surface due to either wave Is equal
to the pressure divided by Z1, which is the characteristic
impedance of the layer mater al (analogous to the quantity
pc for open air). since the waves are oppositely directed,
the particle velocities must be subtracted, and the total
surface particle velocity is proportional to [1 - exp
(23 - j2klt)]/ZI. Dividing the pressure by the particle
velocity gives for the surface specific impedance

z coth (Jklt ) (12.1.14)
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The value of * depends upon the reflectivity of the backing.
For a rigid backing, complete reflection occurs with no
pressure phase shift, so that * is zero and the specific
surface impedance is

z = Z coth (Jk 1 t) . (12.1.14a)

(Rigidly backed layer)

If the layer is thin enough that k1 t <<1,
z:- J(Z /klt) [1 - (klt) 2 ] . (12.1.14b)

(Rigidly backed layer thin compared
to wavelength)

The negative of the imaginary part of kI is the attenuation
constant 1/8.69) times the attenuation in db per unit dis-
tance) for wave motion in the layer. For -Im(kl) > l/t, a
condition which will be realized at high frequencies, the
total attenuation is sufficiently large that the effect of
the reflected wave may be neglected. Roughly speaking, this
condition occurs when the thickness of a practical porous
material is greater than X/4. For this case, the surface
impedance is

z = ZI (12.1.14c)

(Thick layer, any backing)

The propagation constant and the characteristic imped-
ance will now be related to the structure parameters of the
porous layer. It is assumed that motion of the skeleton can
be neglected, which in practice seems to require porous
materials having a density of 6 lb/ft 3 or more. A sinusoidal
wave in the layer with pressure proportional to exp (Jwt-Jklx)
is assumed. The volume velocity* per unit area, which at the
surface is equal to the ordinary particle velocity in the
outside air, is vl. The negative of the pressure gradient
is Jklp. A portion of the pressure drop in a thin volume
element, as described by this quantity, is associated with

.
The volume velocity is the rate of volume flow
(e.g., cm3 /sec).
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the acceleration jc.vI of the volume flow in the element,
and another portion with overcoming the frictional resistance
to air flow, as indicated in Eq. (12.1.15).

jklP - Jme PCv 1 + rfvI . (12.1.15)

Note that this equation effectively defines the structure
factor, m. The rate of change of volume is related to the
rate of pressure change by the effective modulus of compres-
sion of the gas. The adiabatic modulus of free air is pc 2 ,
but on account of the solid content present, the effective
modulus is p c 2 /h in the adiabatic case, or ? c 2 /h in the
event that the compression is isothermal. Here Z is the ratio
of the specific heat at constant pressure to the specific
heat at constant volume, which for air is equal to.l.40.
Thus:

JkIe c2 v 1 /h (-L,) = Jc4p (12.1.16)

(-J'to be omitted for the adiabatic case)

Combining Eqs. (12.1.15) and (12.1.16) gives for the propa-
gation constant,

kI = k /h(m - j rf/P ) () (12.1.17)

(.-r to be omitted for the adiabatic case)

where k denotes the propagation constant for open air, equal
toc.,/c. To obtain the characteristic impedance, which is
the ratio of pressure to volume velocity in a plane wave,
Eq. (12.1.16) may be used. This gives Z k c2/(=)h W
or:

Z 1 i c V(m - Jrf/w )/h (() (12.1.18)

(,'to be omitted for the adiabatic case)

The specific acoustic impedance of the rigidly backed layer
can now be calculated by going back to Eqs. (121.11), and
the statistical absorption coefficient can be calculated
from the impedance. Where the layer is thin compared to the
wavelength, so that Eq. (12.1.14b) applies, a particularly
simple result is obtained. The surface specific impedance
then is:
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- t - 2 (12.1.19)

(r to be omitted for adiabatic case)

Thus, the thin layer behaves like a resistance added to the
reactance of a stiffness element, the latter representing
simply the stiffness of air in the layer. The equation
agrees reasonably with the experimental behavior of mineral
wool or glass wool tiles under the isothermal assumption,
whereas conditions are more nearly adiabatic, even at the
low frequencies, in materials having larger pores. Further
applications of the theory are made in Sec. 12.2 in the dis-
cussion of lined ducts.

The theory is considerably more complicated when the
skeleton cannot be considered rigid. Beranek 1.8/, however,
has developed computation charts for a "soft bI•i--et" in
which the skeleton rigidity can be neglected completely.
Certain special cases where the skeleton has finite rigidity
are described by Zwikker and Kosten .z•.

Perforated Facings for Acoustical Materials. By suit-
able selection of a perforated facing for an absorbing material,
the designer can either insure that the facing does not ma-
terially alter the performance of the material, or bring about
a greatly increased sound absorption in a selected frequency
range, sometimes at the expense of absorption at other fre-
quencies. Two cases which have appeared in the literature
will be reviewed. In the first case, the perforated facing
lies directly against an acoustical material which is des-
cribed only in terms of a normal impedance, independent of
angle 1.10/. In the second case, the perforated facing is
separa tedfrom a rigid backing by an air layer, and the absorb-
ing material, which is described only in terms of its flow
resistance is either a thin cloth in contact with the facing,
or a highly porous substance 1. It is necessary to con-
sider separately the effect of an air space with cellular
partitioning and the effect of an unpartitioned space, since
the latter arrangement makes the impedance dependent on angle
of incidence.

For the first case, in which the facing lies directly
against a layer of given angle-independent impedance, the
symbols below are used:
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RB + JXB normal specific acoustic impedance of

absorbing layer

n number of holes per sq ft

d diameter of hole in inches

t thickness of facing in inches

d" weight of perforated facing in lb/ft 2

f frequency in cps

Where the holes are non-circular with area S per hole, the
results will apply approximately if d is taken to be V'kS/ir.
Application of the theory to slit perforations will also be
described. The analysis considers only the effects of adding
to the impedance of the acoustical material the mass-like
reactance of the facing. The mass-like facing reactance is
a combined effect of the surface mass (which is counted-only
if the facing is a flexible material) and the air mass in the
holes. The air mass is computed by relations which are valid
only if the wavelength of the incident sound is greater than
the hole circumference, and also if the spacing of the holes
is not less than two hole diameters. These considerations
require

d ( 4000/f

d < 6/kF F

Since the flow resistance of the holes is neglected, the
following condition must also be observed:

d < 0.01 t F- /nd 2

This condition insures that the hole resistance is less than
0.2 Pc, so that its effect is negligible under ordinary
conditions.

The moving mass of air associated with a hole of radius
a in a plate of thickness b is 1.11/:

Mh (ra# b + 16 a3/3), (12.1.20)
where e is the density of air. The specific reactance of one

hole is Mh w/wa2, and multiplying by the ratio of total
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facing area to hole area gives the specific reactance for
the facing as a whole, which is Mh w/n(ra2 ) 2 . The addi-
tional specific reactance Mw, where M is mass per unit area
in the case of flexible facing material, is in parallel
with the previous reactance. Finally, in the engineering
units originally defined, the specific impedance ratio of
the facing is:

Xf

f = J - J(0"072)M f

k
M= k

l +

K (l + 1.18 t/d)/nd

(12.1.21)

These equations are represented in the left upper, right
upper, and right center sections of the design chart in
Fig. 12.1.2 which is taken from Ref. (1.10). For a further
discussion of the charts and equations, see Ref. (1.10).
The lower two sections of the chart give the normal wall
coefficient Cp and the statistical absorption coefficient
acstat for the structure as a whole, when the values RB and

XB for the absorbing layer are known. The chart for the
normal wall coefficient is obtained from the relation

Cp = 8d'= 8(R/pc/[(R/pc) 2 + (X/Pc)2],

while the chart for the statistical absorption coefficient
is obtained from Eq. (12.1.13). The left center section

FIGURE 12.1.2

Design chart for perforated facings, to give trans-
mission loss for isolated facing, or to give sta-
tistical absorption coefficient when facing is used
with an acoustical material of known impedance.Ref. (1.10).
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shows in addition the transmission loss for the perforated
facing alone, on the basis of pc impedances on both sides.
The transmission loss chart represents the mass law dis-
cussed. in Chap. 11.

The use of Fig. 12.1.2 is as follows: Given a facing
specified by n, d, t, and a-, enter upper left graph with
nd on the abscissa, move up to specified value of t/d,
move right (crossing K value) to specified value of o-,
move down (crossing M value) to desired frequency, move left
to read X/pc (facing reactance).

To obtain transmission loss read left from X/pc to
heavy line marked TL, and find value on upper scale of (left
center) section of chart.

To obtain absorptivity read left from X/pc to curve
for given value of XB/pc, move down, crossing XT/pC which
is total reactance of facing and backing material, to (one
of the two) heavy slant lines and read on right scale of
(left lower) section the total reactance magnitude IXTI /pc
of facing and backing; move left or right to given value of
RB/pc as marked along lower scales and read •stat (left
lower section or O•p (right lower section) from curves.

The charts of Fig. 12.1.2 also apply approximately in
the case where the perforations consist of a series of long
narrow slots, each slot of width d inches, and the on-center
spacing of the slots equal to s inches. To use the charts
in this case, replace nd by 183/s.

An example of the effects of the perforated facing is
shown by the calculations plotted in Fig. 12.1.3, where
several different facings as listed in Table 12.1.2 have
been used. The assumed impedance characteristic for the

FIGURE 12.1.3

Computed statistical absorption coefficient versus
frequency, for the various facings of Table 12.1.2
used with an acoustical material having the impedance
characteristic of Fig. 12.1.4.
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absorbing layer is shown in Fig. 12.1.4. The impedance is
selected to be representative of experimental data for one-
inch blankets on rigid backing. The resonance effect indi-
cated by the calculations is closely observed experimentally,
but the observed absorption does not always fall off as
rapidly on the high frequency side of the resonance as the
calculations predict. This disagreement has been attributed
to the existence of a small amount of wave propagation
within the material, parallel to the backing. This greatly
increases the high-frequency absorption. The experimental
high-frequency value of C stat is of the order of several
tenths.

In general, a facing having a specific reactance ratio
X/pc of less than 0.5 will have little effect on the absorp-
tion of common acoustical materials. On the other hand, if
X/pc exceeds 20, the absorption will generally be reduced
to less than 10 per cent, except in unusual cases where the
stiffness reactance of the acoustical material may cancel
the large facing reactance at a particular frequency.

The second perforated facing analysis, L.2/ where only
the flow resistance of the acoustical material is specified,
will now be described. At first, we assume that the acous-
tical material is a cloth applied to the facing; a modifi-
cation when the space between the perforated facing and the
rigid wall is completely filled with mineral or glass wool
will be given later. The symbols are defined below. While
the analysis involves dimensionless variables, the design
charts are for an air layer thickness in centimeters.

L air layer thickness, from perforated
facing to the rigid wall, cm

ro 0radius of hole in facing, cm

FIGURE 12.1.4

Normal specific impedance characteristic used in
calculating the results of Fig. 12.1.3 for perforated
facings. The characteristic is typical for a one-
inch homogeneous, porous tile (e.g., rigid glass
wool or rock wool sheet).
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TABLE 12.1.2

PERFORATED FACING DATA USED TO COMPUTE THE ABSORPTION CHARAC-

TERISTICS IN FIG. 12.1.2 REFERENCE 1.10

Fac- n d t 70 M
holes hole facing surface open totaleffective

diameter thickness density density

ing per sq' inches inches lb/ft 2  area lb/ft 2

A 9 5/8 3/16 1.5 1.92 0.22

B 36 5/8 3/16 1.5 7.65 m.06

C 144 5/16 3/16 1.5 7.65 0.038

D 576 5/32 3/16 1.5 7.65 0.027

E 4608 O.068 0.0179 0.75 11.67 0.0046

if frequency of incident sound, cps

I/° resonance frequency in cps for normal
incidence

c speed of sound in air

k 2:K 0/c propagation constant for air atfrequency Vof

p fraction of area which is open

ri total flow resistance in rayls of
material attached to facing. The
specific flow resistance of the
material (unit thickness) is r,
and the effective thickness of the
material is k.

cav stat statistical absorption coefficient

the ratio of the frequency V to the
resonance frequency Vo

0= r-/p pc
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The analysis assumes that the facing is rigid. The
specific impedance due to the perforations is obtained on
the basis of the effective air mass from Eq. (12.1.20).
The added specific impedance due to the flow resistance of
the cloth is r-/p*. The specific impedance due to the air
layer of depth L is -Jpc cot(koL), as may be shown from
Eq. (12.1.14a), if the air layer is partitioned into cells
or if the incoming wave is at normal incidence. A more
complicated relation is necessary for oblique incidence on
a nonpartitioned layer. The total specific impedance of
the layer is the sum of the three contributions (air mass
reactance, cloth flow resistance, air layer impedance).

Resonances occur at those frequencies where the re-
actance of the air layer is Just sufficiently negative to
compensate for the hole reactance. Large absorption may
occur at these resonances if the resistive component of
the impedance is properly chosen. The statistical absorp-
tion coefficient is computed by use of Eqs. (12.1.12) and
(12.1.3). In the case of the unpartitioned air layer, the
relations are sufficiently complicated to require numerical
integration.

The results of the analysis outlined above are given
as the statistical absorption coefficient vs a frequency
parameter, in Fig. 12.1.5, (for the partitioned air layer)
and Fig. 12.1.6, (for the unpartitioned case). An auxiliary
chart, Fig. 12.1.7, is required to compute the lowest normal
incidence resonance frequency, corresponding to T = 1. This
provides numerical values for the dimensionless frequency
scale used on the preceeding absorption coefficient charts.

The open area factor p is used here because the
air flow is confined to the parts of the cloth
which are behind perforations. For a cloth much
thicker than the hole diameter, the flow would
spread out sufficiently that the factor p should
be omitted.
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A method for using the charts is the following: The
designer selects from one of the charts in Fig. 12.1.5 or
Fig. 12.1.6 an absorption-frequency characteristic which
will be acceptable, and decides upon the frequency in cps,
Io, at which the normal incidence resonance is to be
established. Fig. 12.1.5 or 12.1.6 shows the values of 9
and koL which must be used to obtain the desired character-
istic. In Fig. 12.1.7, the set of lines sloping upward to
the right is then used to obtain the required value of L,
in centimeters, from the known values of Uo and koL. The
set of curves sloping upward to the left then indicates a
relationship which must be realized between t/ro and ro/pL.
Successive trials may be necessary to discover an available
facing which will give the required relation, or it may
prove that it is necessary to start with an available facing
panel, and to select a somewhat different frequency
characteristic which can be realized with this. The working
method is illustrated by the numerical example which follows.

Suppose that it is desired to obtain the absorption
characteristic (with unpartitioned air backing) given by
0 = 4, koL = 1.0, in Fig. 12.1.5 with the frequency if
corresponding to 300 cps. Suppose also that the available
perforated facings are those in Table 12.1.2. From Fig.12.1.7
it is found that the air layer depth, L, must be 18 cm, to
make foo equal to 300 cps with koL equal to 1.0. It is now
possible to calculate values of ro/pL for the various facings,
as tabulated in Table 12.1.3. Then, as also shown in the
tabulation, the required value of t/ro for each facing is
found from Fig. 12.1.7. The required t/ro values are compared
with the values actually found in each facing. The facing B
is selected, since its value of t/ro is sufficiently close to
the desired value to place both Yo and koL within a few per
cent of the original design values. If none of the available
facings had given this agreement, it would have been necessary
to select a new design curve with new values of 0 and k0 L.

FIGURE 12.1.5

Statistical absorption coefficient, as a function of
frequency parameter v/ vo, for perforated facings with
unpartitioned air backing of depth L, and material of
known flow resistance. Lowest frequency of normal-
incidence resonance is Yo. 0 is equal to flow resis-
tance in rayls, divided by pc; ko is equal to 2x 1f0 /c 1.111
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TABLE 12.1.3

CALCULATIONS OF PERFORATED FACING CHARACTERISTICS

Facing (from
Table 12.1.2 A B C D E

Hole Radius
to, cm 0.397 0.397 0.198 0.0993 0.0864

t/ro o.6 o.6 1.2 2.4 5.26

Fraction Open
Area p 0.0192 0.0765 0.0765 0.0765 0.117

r o /pL for L
18 cm 1.15 0.288 0.144 0.0721 0.0411

Required t/ro
from Fig. 12.1.7 0 0.7 3 5.. _

Figure 12.1.6
Statistical absorption coefficient, as a function
of frequency parameter v/ ?to, for perforated facings
with partitioned air backing of depth L and material
of known flow resistance. Lowest frequency of normal-
incidence resonance is 1ro. Q is equal to flow
resistance in rayls, divided by c. ko is equal to
21 Vole. Ref. (1.11).
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Since 0 = 4, the specific acoustic resistance
(rl/p) must be 4pc, or about 165 rayls. If a thin cloth
is used immediately against the facing as in Fig. 12.1.8a,
its flow resistance ri must be p(4pc) = 0.0765 (4pc) or
about 12.5 rayls. If a blanket is used as in Fig. 12.1.8b,
where the blanket thickness is several times the hole dia-
meter, it may be assumed that the flow spreads out over
the whole area, and the flow resistance ri must be simply
@ (pc), or 165 rayls. This is also true if the cloth or
blanket is spaced from the facing by one or more hole dia-
meters, as in Fig. 12.1.8c, but still completely contained
within a distance L/4 of the facing. If the air cavity is
completely filled with a porous material as in Fig. 12.1.8d,
the total flow resistance ri must be 30 (pc). The last
relation is accurate only for a partitioned backing, however.
Intermediate cases are more complicated..

Generally, the value of 9 should be not less than 1.8
for the unpartitioned backing, and not less than 1.6 for
the partitioned backing. These values give the highest
absorption maxima. Smaller 0 values give smaller absorption
at all frequencies than do the optimum values. Values of 0
larger than 1.8 and 1.6 give broadened maxima with somewhat
increased absorption at frequencies far from the peak, but
with decreased absorption at the peak.

The unpartitioned air backing gives a greater high-
frequency statistical absorption coefficient than does the
partitioned backing. When the backing is unpartitioned,
there is always at least one angle of incidence for which
the absorber is resonant at any given frequency. Practical

FIGURE 12.1.7

Design chart for perforated facing with air backing,
which may be used in connection with Figs. 12.1.5
and 12.1.6. The family of curves sloping upward to
the right determines the air backing depth L to place
the lowest normal-incidence resonance at frequency Y
when koL has been chosen. The family of curves 0

sloping upward to the left determines the necessary
relation between t/ro and ro/pL when koL has been
chosen. Facing thickness, t; hole diameter, r o ;
fractional open area, p. Ref. (1.11).
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measurements with partitioned backing show performance
which is intermediate between the partitioned. and. non-
partitioned. predictions at very high frequencies; as the
wavelength becomes smaller than the width of the cells
formed by partitioning, the performance approaches that
expected for no partitions. At and below the frequency of
maximum absorption, the absorption is increased by the
presence of partitions.

The method. of calculation applies with reasonable
accuracy if the facing is perforated by long narrow slots
rather than by circular holes. The calculations should. be
based on an equivalent hole radius equal to half the slot
width.

Flow Resistance Data for Acoustical Materials.
Figure 12.1.9 summarizes measured. values of specific flow
resistance for severalp orous materials as a function of
volume density in lb/ft . Individual samples may vary by
some 20 per cent from the nominal values.

It has been found 1.131 that the flow resistance of
loose sand can be expressed approximately by the equation

r = 19/d.13 (12.1.22)

FIGURE 12.1.8

Illustrations of special cases for which the effective
flow resistance r' in the expression 9 = r'/pc is easily
computed in the perforated facing analysis. Case A,
cloth adjacent to facing, cloth thickness much less than
hole diameter, use r' equal to rA/p, where rY is flow
resistance of cloth in rayls and p is fractional open
area of facing. Case D, blanket with thickness greater
than hole diameter is adjacent to facing, but located
entirely in left-hand quarter of backing space, use
r' = r k, flow resistance of blanket in rayls. Case C,
cloth or blanket spaced from facing by at least one hole
diameter, but within left-hand quarter of backing space,
use r' = rk , flow resistance in rayls. Case D, entire
space filled, use r' equal to one-third of blanket flow
resistance in rayls.
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where r is the specific flow resistance in rayls/cm and
d is the average particle diameter in mm. This result
applies where the particle size is reasonably uniform so
that an average diameter can be given. The flow resis-
tance in rayls for a number of cloths and screens is given
in Table 12.1.4.

Porosity values for several materials are given in
Table 12.1.5. The porosity of fibrous blankets of the
materials given, but having a different density may be
estimated by means of the principle that (1 - porosity)
is proportional to the density.

The structure factor m has been evaluated in a few
cases. A value of 2.7 for a structure consisting of many
wire screens in close contact for the case of perpendicular
incidence has been reported. However, considerable varia-
tion with frequency was observed.1._/. The computed
value of m is 3.0 for a structure which contains long
narrow passages oriented at random angles, l.3. The experi-
mental value for loose sand is 4.3,1.3. lGenerally, m
appears to be about 1.5 for blankets of porosity 0.95 or
more1.9

Propagation Constant. Illustrative propagation data
for two weights of Fiberglas, based on measurements 1.14
in the range 50-1000 cps, are summarized in Table 12.1.6.
The propagation constant is the quantity k1 corresponding
to the expression exp (-Jklx) for the phase and amplitude
behavior of a plane wave. Expressions for the phase
velocity and the attenuation are given separately in the
table. Measurements of the propagation constant for a rock
wool (J-M Stonefelt, Type M) .9 and for loose sand
have also been published.

FIGURE 12.1.9

Specific flow resistance (rayls/inch) for various
glass and mineral wools, as a function of volume
density. A, PF (board) Fiberglas (the material
meant by reference to "PF" Fiberglas unless a spe-
cific style is stated); B, TWF white wool Fiberglas;
C, PF 450 Fiberglas; D, Aerocor Fiberglas; E, J-M
Thermoflex; F, B-H rock wool, Style #1, with wire
facing; G, B-H rock wool, Style 2; H, J-M #305
mineral wool.
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TABLE 12.1.4

FLOW RESISTANCE OF CLOTHS AND SCREENS

WIRE MESH

Number of Wires Wire Diameter Flow Resistance
per Linear Inch cm rayls

30 0.033 0.567
50 0.022 0.588

100 0.0115 0.910
120 0.0092 1.35
200 0.0057 2.46

30 0.0305 0.111
45 0.0203 0. 174
85 0.0101 o.1430

210 0.005 o.98o

CLOTHS

Peak SPL
for 4-

Manu- Flow Increase Thick- Con-
facturers Resis- of Flow ness struction
Designa- tance Resis- per Weight ends x picks
tion Finish rayls tance inch oz/yd2  per inch

63 none 1.3 --- 0.013 9.6 16 x 14
82 none 40 134 0.014 14.5 60 x 56
84 none 22 120 0.028 24.6 42 x 36

120 none 30 118 0.004 3.2 60 x 58
126 none 4.5 108 0.0065 5.4 34 x 32
138 none 220 ) 130 0.007 6.7 64 x 60
138 none 220 )130 --.--- 6 4 x 60
181 none 38 130 0.0085 8.9 57 x 54

1032 none 0.50 ............
1044 114 3.6 106 0.022 19.2 14 x 14
1544 114 1.9 --- 0.022 17.7 14 x 14
1550-24 none 4.2 108 --- 24 x 32

2 oz matte 114 22 130 18 ---
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TABLE 12.1.5

POROSITY VALUES

Material Porosity Source (Ref.No)

Celotex QT Duct Liners 0.90 1.8

J-M Permacoustic 0.875 1.8

Fiberglas, 9 lb/ft 3 PF 0.965 1.14

Fiberglas, 4.25 lb/ft 3 TWF 0.985 1.14

J-M Sanacoustic Pad 0.94 1.8

J-M Stonefelt Type M Refined Rock Wool
2.7 lb/ft3 0.97 1.9

USG Quietone 0.93 1.8

USG Perfatone Pad 0.96 1.8

Kapok 0.99 1.8

Sand, Nearly uniform particle size packed 0.36 - -

Sand, nearly uniform particle size loose 0.41 av 1.13

Specific Acoustic Impedance Data. Specific impedance
data for a number of acoustical materials are shown in
Figs. 12.1.10-14. While the dataae in all cases obtained
under normal incidence in a standing-wave impedance tube,
usually of 3" in diameter, the normal impedance may be
assumed practically independent of angle of incidence for
the materials which are considered. In some cases, the mea-
sured impedance-frequency curves are supplemented by curves
which are calculated by assigning suitable physical constants
to the material. Calculations are made by the procedures
of Ref. 1.9; for rigid tiles (materials more dense than
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TABLE 12.1.6

PROPAGATION CONSTANTS FOR FIBERGLAS BLANKETS

4.25 lb/ft 3 TWF 9 lb/ft 3 PF (hard)

Propagation
Constant, cm-I 10-3(2.67 f 0 "6 6 -3.90 fO-48) lo- 3 (l.96f0 .74 -5.0 fO.48

Phase Velocity,
cm/sec 2.35 x 103 fO.34 3.20 x 103 fO.26

Attenuation,
db/cm 0.034 f0 O48  0.43 f0 .4 8

f is frequency
in cps

6 lb/ft 3 ), the procedure is equivalent to using Eqs.(12.1.14)
and (12.1.17) or, if the layer is also thin compared to the
wavelength, to using Eq. (12.1.19). Reasonable agreement
between calculated and measured values is obtained, but the
calculations are restricted to homogeneous materials. It
will be observed that the impedance function for other
materials (e.g., Celotex C-4, a perforated material) shows
additional complexity, particularly in the reactance behavior.
No rigorous method for calculating the impedance has been
advanced in these cases.

Statistical Absorption Coefficients. The statistical
absorption coefficient is shown as a function of frequency,
for several acoustical materials, in Fig. 12.1.15. The data
are obtained by calculation from the specific impedance
curves in the preceding figures.

Normal Absorption Coefficient Data. Fig. 12.1.16 shows
the normal absorption coefficient, as a function of frequency,
for several "soft blankets" of Fiberglas. The information
was obtained by measurements in a standing-wave impedance tube.
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Chamber Absorption Coefficients. Figs. 12.1.17-19
show the absorption coefficients as a function of frequency
for perforated acoustical tiles of thickness 1, 1/2 and 1/4
in. In each chart individual curves show the behavior of
material of given thickness on standard mountings l, 2 and
7 as defined by the Acoustical Materials Association. The
charts are constructed from averages of the AMA chamber
absorption coefficients for perforated tiles of the various
manufacturers. The data for the different tiles are suffi-
ciently close together to Justify the use of these average
charts for most engineering purposes. Detailed information
for individual products is available in Ref. 1.6.

Average values of the noise reduction coefficient are
also shown for each mounting condition and for each tile
thickness. The noise reduction coefficient is defined as
the average of the chamber absorption coefficients at 256,
512, 1024 and 2048 cps, given to the nearest 5 per cent.
(The average values given here are not rounded to the near-
est 5 per cent).

The mounting conditions are defined as follows:

Mounting 1.

Sample cemented to plaster board.
Considered equivalent to cementing to
plaster or concrete ceiling.

Mounting 2.

Sample nailed to 1 in. x 3 in. wood
furring, ordinarily 12 in. on centers.

Mounting 7.

Sample mechanically mounted (spaced
from ceiling).
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FIGURE 12.1.13
Measured (solid curves) and computed (broken curves) specific
acoustic impedance for: A. Baldwin-Hill Monoblock 4" layer);
BO 105 lb/ft3 pP Fiberglas (40 layer).
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12.2 Lined Ducts

A lined duct consists of a set of walls, usually
assumed to be acoustically rigid and impervious, covered

with an absorbent material which surrounds a channel or
space of uniform section. This is shown in Fig. 12.2.1.
The absorbent lining is usually a porous acoustical ma-
terial, but it may also include a facing and an air layer.
The passage is the central open section through which air
can flow. The important dimensions for design discussions
are the lining thickness, the width or widths of the pas-
sage (measured between lining surfaces,) and the total
length. In the case of a circular duct, the diameter of
the open section will be considered the effective passage
width.

x

Lt

y

Lx

FIGURE 12.2.1

Sketch showing geometry of rectangular lined duct, and
coordinates used in analysis.
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A lined duct is usually designed to have an attenua-
tion-frequency characteristic possessing a broad maximum.
The frequency of the maximum is governed both by the passage
dimensions and by the properties of the lining. In most
practical cases, the condition of maximum attenuation is
realized when the wavelength of sound is of the order of
the smaller passage width. The frequency of maximum
attenuation can be lowered somewhat by increasing the lin-
ing thickness. For this reason, the lining sometimes
consists of a layer of porous material (e.g., mineral wool
or glass fiber blanket) which is separated by an air space
from the enclosure wall. This arrangement economically
increases the effective depth of the lining for a given
amount of acoustical material.

Qualitative Discussion of Attenuation in Ducts. The
acoustic attenuation of a lined duct is the result of con-
version of acoustical energy into heat in the absorbing
layer. This energy absorption is most readily discussed
for the case in which the lining reacts locally with the
sound wave. Local reaction means that there is no
important transmission of waves within or behind the absorb.-
ing material, in the direction parallel to the duct axis.
Such wave transmission may materially reduce the attenuation
of sound in the duct; therefore, in all applications to be
discussed, it is assumed that local reaction approximation
is valid. In order to prevent longitudinal wave motion in
an air space behind the lining, it is necessary to insert
rigid partitions which are perpendicular to the duct axis.
Successive partitions should be spaced by about one tenth
of the wavelength at which maximum attendation is obtained.
When the lining extends to the wall without an air space,
lateral partitioning is usually unnecessary because of the
large attenuation of sound in the lining material.

The duct lining may be characterized by its normal
specific acoustic impedance, which is the ratio of acoustic
pressure to particle velocity normal to the surface. For
the case of local reaction, the normal specific acoustic
impedance is independent of the angle of incidence and hence
is the same for all directions which the incident wave in
the duct may have with respect to the lining.

The normal impedance of the lining usually contains

a resistive term, so that there is a component of the normal
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particle velocity at the lining surface which is in phase
with the pressure. Thus, power is delivered to the lining
at a rate proportional to the product of acoustic pressure
and the in-phase particle velocity. Physically, this
power is transformed into heat due to both viscous friction
within the lining and compression by the acoustic wave of
the gas contained within the lining.

The simplest analysis of duct action is obtained if
it is assumed that the acoustic pressure is uniform across
the open portion of the duct. It is then an easy matter
to compute the effects of air flow into the lining, and to
find the attenuation of sound in the duct.

The uniform-pressure assumption is always reasonable
(though not rigorous) for the special case in which the
wavelength of sound is greater than the narrowest passage
width, and at the same time the absorption coefficient of
the lining is much less than unity. For this reason, simple,
approximate attenuation formulas obtained from the uniform
pressure treatment are almost always satisfactory in prac
tice for frequencies well below the attenuation peak for
a given duct. Moreover, if the lining has a relatively high
impedance, such simple formulas are valid for frequencies
closely approaching the peak. Since it can be shown that
the low-frequency formulas can be expressed in terms of
the absorption coefficient of the lining, it is not neces-
sary to know the specific acoustic impedance of the lining
for this approximate analysis.

Unfortunately, serious errors may be made by injudi-
cious application of the approlmate results~obtained with
the uniform plane-wave assumption. If the frequency is
sufficiently high to allow the feorxation of cross-modes in
the duct, or if the lining has very large absorption, the
acoustic pressure near the lining wfill be appreciably less
than that at the axis of the duct; in this case the result-
ing attenuation will be less than that computed on the
plane wave assumption.

It is possible to solve the acoustic wave equation
to determine the propagation of sound waves in a duct of
simple shape for any frequency and for any boundary
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impedance. The rigorous solution has been relatively
little used, because the practical work is laborious even
with the aid of computational graphs. It is possible,
however, to derive from the wave solution approximate,
limiting formulas which are much more accurate at relatively
high frequencies than the results of the uniform pressure
approximation. A combination of the approximate formulas
obtained by the two methods leads to simplified charts from
which the designer can very quickly form a rough estimate
of the performance of a given duct. Although these charts
(Figs. 12.2.2-6) must be supplemented for precise work by
experimental data and by more elaborate calculations, the
charts and the analysis leading to them are valuable because
they show in a direct way the operation of several of the
important design parameters.

Calculated attenuation values for a certain frequency
should not be expected to apply to a section of duct having
a length less than the wavelength of sound at that frequency.
While it will be shown that end effects of one type (asso-
ciated with cross modes in the duct) will cause the measured
attenuation to exceed calculated values at high frequencies,
other effects (associated with the impedance change at the
duct ends) often cause a relatively short duct to give less
attenuation than the calculated value.

The behavior of ducts in the frequency range of
maximum attenuation cannot be treated by simple formulas,
for the various approximations fail in this range. A further
difficulty in practice, for frequencies in and above this
range, is that sound can be carried through the duct by
various modes of propagation; not only by the principal,
or axial wave, but by oblique waves which are, in a sense,
reflected back and forth between the duct walls. The

Figure 12.2.2

Approximate design chart for attenuation in rectangular duct
lined on two opposite walls with a porous layer of known flow
resistance. For a given value of the flow resistance parameter
Q, the attenuation curve for low, mid and high frequencies is
given by three line segments, representing respectively Eqs.
(12.2.25), (12.2.26), and (12.2.24). Broken lines show where
the first approximation is extended beyond nominal limit of
validity. Arrow on horizontal axis shows the nominal lower
limit of validity for the second approximation. Entire chart
is for (t/ .tx) = 0.2.
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attenuation is greater for the higher modes (oblique waves)
than for the principal waves. Thus if a large portion of
the acoustical energy is carried in the higher modes, the
attenuation will be greater than that predicted by calcula-
tion, since calculations are ordinarily made for the
principal wave.

In principle, acoustical theory would permit
calculation of the distribution of the energy among the
various modes of travel, but in practice this calculation
is almost never feasible. To make the calculation requires
much more detailed information about the acoustical field
near the sound source than is ordinarily available. For
these reasons, considerable use is made of experimental
data for frequencies in or above the range of the attenua-
tion peak.

The remainder of this section contains brief
derivations of the simplified attenuation formulas based
on both the uniform pressure approximation and the wave-
theory treatment; design charts summarizing the results
from these approximations and additional charts based on
typical experimental data are given.

Quantitative Treatment Under the Uniform Pressure
Assumption. The expression for a unidirectional plane wave
traveling in the positive x direction contains the space
factor exp (-Jkz), where k is the propagation constant and
x is the distance coordinate. For sound waves in a lossless

Figure 12.2.3

Approximate design chart for attenuation in rectangular duct
lined on two opposite walls with a porous layer of known
flow resistance. For a given value of the flow resistance
parameter 9, the attenuation curve for low, mid and high
frequencies is given by three line segments, representing
respectively Eqs. (12.2.25), (12.2.26), and (12.2.24). Broken
lines show where the first approximation is extended beyond
nominal limit of validity. Arrow on horizontal axis shows
the nominal lower limit of validity for the second approximation.
Entire chart is for (t/1 x) = 0.4.
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tube (or in open air) the propagation constant* is given
very closely by:

SW 27 (K , (12.2.1)

where K is the compressibility of air, 9_ is the density,
c is the speed of sound in air, and w is radian frequency.
When the rigid boundary of the lossless tube is replaced
by a non-rigid boundary, (the duct lining), the moving mass
is not changed as far as the wave motion is concerned, but
the effective compressibility is changed by the flow of
air into the lining. This effect is conveniently expressed
in terms of the admittance index of the lining, Yr , which
is equal to the reciprocal of the impedance index. (See
Sec. 12.1). The effective compressibility is defined as
K' = (l/p)(dV/V), where dV is the change of volume for an
initial volume V, under the excess pressure p.

The passage area of the duct will be denoted by A,
and the total perimeter by P. If a sinusoidal excess pres
sure p is applied across a length dx of the duct, the volume
of air inflow is that due to the compressibility of the
gas in the passage which is pKA dx, plus that due to the
flow into the lining, which is pP \ dx/(- Jwe c). If the

* The term propagation constant is used in the literature in some
cases to denote k and in some cases to denote the complete
coefficient of x, which is -Jk.

Figure 12.2.4

Approximate design chart for attenuation in rectangular duct
lined on two opposite walls with a porous layer of known flow
resistance. For a given value of the flow resistance parameter
Q, the attenuation curve for low, mid and high frequencies is
iven by three line segments, representing respectively Eqs.
12.2.25), (12.2.26), and (12.2.24). Broken lines show where

the first approximation is extended beyond nominal limit of
validity. Arrow on horizontal axis shows the nominal lower
limit of validity for the second approximation. Entire chart
is for t/A ) = 0.6.
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definition of the compressibility is now applied, where
the volume of gas in the section is V = Adx, it is found
that the effective compressibility is:

K' = K + Py (12.2.2)
-Jw pcA (

The propagation constant for the lined duct is then computed
by substituting (12.2.2) into (12.2.1). By standard wave
theory, the attenuation constant is equal to the negative
of the imaginary part of the propagation constant and the
attenuation o- in db per unit length is 8.69 times as great,
so that

S=-8.69 Im(k[rlY- ' (12.2.3)

This is the desired attenuation formula. The quantity L
equals the ratio A/P and k is the propagation constant (c./c)
for open air. In case the passage perimeter is not uniformly
treated with a single material, the admittance Yý is given by:

S= (n IPI +tý 2P2  + ...... Y n Pn )/P (12 .2 .4 )

where the length P of the perimeter has the admittance 1,
the length P 2 has ihe admittance ýX 2' etc.

Figure 12.2.5

Approximate design chart for attenuation in rectangular duct
lined on two opposite walls with a porous layer of known flow
resistance. For a given value of the flow resistance parameter
0, the attenuation curve for low, mid and high frequencies is given by
three line segments, representing respectively Eqs. (12.2.25),
(12.2.26), and (12.2.24). Broken lines show where the first approxi-
mation is extended beyond nominal limit of validity. Arrow on
horizontal axis shows the nominal lower limit of validity for the
second approximation. Entire chart is for (t/ x) 0.8.
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The formula (12.2.3) is a good approximation only
for JIvj << 1 ( a "hard" wall); otherwise the uniform pres-
sure assumption may be unwarranted. In practice the lining
usually has kie <' 1 for frequencies well below the
attenuation maximum. Also, the relation will often be
inaccurate for frequencies sufficiently high that the wave-
length is less than the narrowest passage width of the duct,
for again the pressure is not likely to be uniform.

A further simplification may be made if, in addition
to the condition IiI ./ 1, the condition t ;,kL is realized*.
Then the radical in (12.2.3) may be expanded to give the

It can be shown for ordinary tiles and blankets that this condi-

tion is substantially equivalent to requiring that the lining
thickness be much less than L.

Figure 12.2.6

Approximate design chart for attenuation in rectangular duct
lined on two opposite walls with a porous layer of known flow
resistance. For a given value of the flow resistance parameter 9,
the attenuation curve for low, mid and high frequencies is given
by three line segments, representing respectively Eqs. (12.2.25),
(12.2.26), and (12.2.24). Broken lines show where the first approxima-
tion is extended beyond nominal limit of validity. Arrow on hori-
zontal axis shows the nominal lower limit of validity for the second
approximation. Entire chart is for (t/.qx) = 1.0.
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approximate result

T L -)-4.34 p. db (12.2.5)

which is a compact expression for the decibel loss in a
section of length L. The quantity p., the conductance ratio,
is the real part of Yt . Another way of writing (12.2.5)
is

i- L -Y 1. 1 MO db (12.2.6)

where O is the normal free-wave absorption coefficient
of the lining. The expression may be Justified by noting
that this absorption coefficient is approximately equal
to 4P (Sec. 12.1) provided that 1•f <1i, which is a condi-
tion already assumed.

The approximate expressions for duct attenuation
which have been given in the literature are generally sim-
ilar to (12.2.3), (12.2.5) or (12.2.6). These expressions
ive useful results within their limitations. Equation
12.2.6) is less accurate than the former two relations,

and always predicts smaller values of the attenuation than
are measured experimentally.

Special attention should be given to an empirical
expression, comparable to Eq. (12.2.6), which was used by
Sabine 2.1/. In the present notation, it may be written*

0-L = 1.05 d 1.4 (12.2.6a)

where OL is the chamber absorption coefficient of the
lining as ordinarily reported by acoustical materials manu-
facturers. This relation applies to a duct uniformly lined
on all sides. While no theoretical Justification for the
exponent 1.4 is provided, it appears that this compensates
approximately for both the differences between free-wave
normal absorption coefficients and chamber coefficients,

* The original form is (db/ft) 12.6 exl' 4 (p/A), where
P and A are expressed in inches and square inches
respectively.
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and for the errors of approximation inherent in a formula
of the nature of (12.2.6) as the absorption coefficient
increases with increasing frequency. Sabine showed that
(12.2.6a) is approximately in agreement with experimental
attenuation measurements up to frequencies of 2000 cps for
six ducts whose open dimensions were combinations of 9, 12
and 18 inches. These ducts were lined with rigid mineral
wool one inch deep. According to Beranek's interpretation
2.2/ of the Sabine experiments, the value of I'XI did not
exceed 0.3; hence it may be considered that (12.2.6a) was
verified for 1V < <. 1. Beranek further showed that
(12.2.6a) was in approximate agreement with rigorous
calculations from wave theory, under the stated conditions,
and showed that the formula should not be applied if the
duct shape is far removed from square. This approximate
relation has been widely used in attenuation calculations
for ventilating ducts, and is to be recommended when used
within its limitations. Practically, it is advisable to
restrict application to cases where the long passage-width
is not greater than twice the short passage-width.

Special Expressions for Boundary Consisting of a
Porous Layer. The relations developed above convey no
clear idea of the manner in which the attenuation will
vary with frequency in a practical case. The frequency de-
pendence comes about in part through the behavior of the
admittance index, Y% , and this can be stated only when the
nature of the lining is specified. In many cases, however,
the lining consists of a porous layer; i.e., a homogeneous
acoustical blanket or tile. Consequently, it will be
helpful to analyze this common case in detail by utilizing
available theory for the porous layer (Sec. 12.1). The
resulting expressions will enable one to predict the
frequency dependence to be expected in certain special cases,
even though complete experimental admittance or absorption
measurements for the lining are not available. The symbols
which will be used in discussing the porous lining are
listed below:

m structure factor

t layer thickness

h porosity

e density of air

r specific flow resistance of the lining material
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kI - k[h(m--jr/W )1/2 (Propagation constant in
porous lining)

Z = c [(m -jr/c w )/h]l/2(Characteristic impedance
of lining material)

0 = rL/pc

c speed of sound in air

k propagation constant in air

L ratio of passage area to passage perimeter

By the theory of absorbing materials (Sec. 12.1), the

admittance of the layer is

= = (ec/Z1 ) tanh (Jk 1 t). (12.-2.7)

This expression may be replaced in certain regions of
frequency by suitable approximations. First, a low-frequency
region may be defined by Ik 1 t4l. For frequencies in this
region, the hyperbolic tangent in Eq. (12.2.7) may be replaced
to good accuracy by the first two terms in a series expansion.
When this is done, and when the appropriate approximations
for kI and Z are introduced, (12.2.7) becomes

1 h2 e(kL) 2 (L) 3 + jh[kt + i mh(kt)3 ] (12.2.8)

To obtain the speed of sound in the duct, c', and the
attenuation in db per unit length, c, it is necessary to
use the standard relations of wave theory, c' =co/Re(k'),
and V= -8.69 Im(k'). With the restriction given below
in Eq. (12.2.14), Eqs. (12.2.1) and (12.2.2) can be expanded
to give the simple relations

cl c/[l + Im(A) 1 /2 (12.2.9)kL

+Im-(A) ] 1 /241.2.0
- 4.34 Re(Yl)/L[I + km~)L/

4.4R~v)Ll kL (12.2.10)

Combination of these relations with (12.2.8) gives the
following low-frequency equations for the phase velocity
of sound, and for the db attenuation in a length L, in a
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duct with a porous lining.

c- c/[1 + r]I/2 (12.2.11)

0FL c~1. 45 h2G L)()/[ + ht-l/ (12.2.12)

The restrictions imposed in deriving these approximate
relations are summarized in the two relations:

.2 @2
(kL) 2< < L~~ 1 m2 (12.2.13)

2 2 (12.2.14)
0 ht m

The first of these expresses the condition Ikltj e4 1, while
the second expresses the condition Re(7)/kL(I + ht/L) z.< 1,
which allowed the radical in (12.2.1) to be approximated.
In Eq. (12.2.12), 0 is the flow resistance parameter rL/ pc,
while kL is the frequency parameter.

Another range of approximation for the duct lined
with porous material, still under the uniform-pressure assump-
tion, is obtained when the lining may be regarded as a "thick
layer." The "thick-layer" condition means that the porous
lining is sufficiently thick that any wave motion, entering
the lining perpendicularly, will be so highly attenuated
after experiencing reflection at the duct wall and then com-
pleting a round trip in the lining layer that the energy
returned to the surface is negligible. There is not
necessarily any frequency range in which the wavelength is
short enough for this assumption to be applicable and in
which also the uniform pressure assumption is applicable,
but in a number of cases of practical interest such a range
does exist. The "thick layer" condition, as described above,
may be defined in terms of the attenuation constant for
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wave motion in the porous material, which is -Im(k );
a reasonable definition for the thick-layer condition is
t > 1/-Im(kl). For porous materials likely to be chosen
in practice, this is roughly equivalent to saying that
the lining thickness must exceed one-eighth the wavelength
of sound in air.

The quantitative significance of the thick-layer
condition is that the admittance of the thick layer is
closely equal to Zj 1-. The expression for Z1 has already
been given; it is evident that this expression is a radical
which can be expanded in one form if the frequency para-
meter kL is much less that 0/m, and in another form if the
reverse holds. The low frequency condition (that is, kL 4<
0/m) will be assumed. The admittance for this condition
is approximately

S-- (1 + J) (hkL/20)I/2. (12.2.15)

This value for the admittance is put into Eq. (12.2.3) to
give the attenuation. It will be assumed that the frequency
and the flow resistance are sufficiently large that (2kLO/h)
is much greater than unity. Then, approximately, the
attenuation in db per length L is given by Eq. (12.2.16).

G L n3.l(hkL/) 1/2 (12.2.16)

The assumptions made in obtaining this relation are:

t i> 1k) , or roughly t

mkL/0 > - l

2kLO/h > 1

Uniform pressure across the duct opening.

Although these special conditions are not found over any
appreciable range of frequencies in a practical design,
Eq. (12.2.16) gives useful information regarding the fre-
quency dependence of the attenuation in a duct with porous
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lining. This equation shows that the attenuation is
proportional to the square root of the frequency, while
in the low frequency range, according to Eq. (12.2.12),
the attenuation increases with the square of the frequency.

Finally, in the thick-layer approximation and at
sufficiently high frequenies, it is found that Zl is approxi-
mately equal to p c rm/h. The criterion for this range is
kL >> 9/m. The attenuation per length L is approximately

9 L 4.34 / 7h/m db. (12.2.17)

This limiting formula will almost never apply in practical
cases because uniform pressure is not found ordinarily in
the frequency range for which it is valid. Its importance
is that it seems to represent an upper limit, not normally
attainable, for the attenuation in a duct with porous lining.

The uniform--pressure approximation has been discussed
in the literature by Bosquet, Sivian, and Willms 2.3,2.4,2.5/.

Quantitative Treatment by Wave Theory. The rigorous
treatment of wave propagation in a duct is restricted to
ducts whose cross-section is of simple shape. A rectangular
section (Fig. 12.2.1) is assumed for the present discussion.
The solution to the acoustic wave equation for the rectangular
duct may be written, for a sinusoidal wave, as

p = X(x) Y(y) Z(z) ej"'t

where

X(x) = cosh (-Jkxx + x)

Y(y) = cosh ( Jk y + y

Z(z) = e-jkz z (12.2.18)

The propagation constants must obey the relation

2 2 2 2k + k + k = k . (12.2.19)x y z

To determine the attenuation, Im(kz) must be found.
Basically, the solution is obtained by finding kx and ky,
each of which is determined by the frequency and by the
impedances on one pair of walls, and then by computing kz
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from (12.2.19). The relation giving kx, for example, is

k k

-Jk=x coth- 1 (kx )+ coth- 1 ( x (12.2.20)

where -x is the passage width in the x direction, Ylx is the
admittance of the wall at x = 0, and n2x is the admittance
of the wall at x = ýx" A similar relation holds for ky.

In general there is no simple calculation procedure
for solving Eq. (12.2.20). Morse has discussed a graphical
method of solution 2.8,2.9/. This method is recommended
for accurate work, but it is time-consuming and is sufficiently
complicated that it permits little insight into the relation-
ships between the properties of the lining and the acoustical
performance of the duct. For low frequencies or for suffi-
ciently high frequencies, approximate formulas may be derived
by expending (12.2.20) in series form, by procedures which
have been given by Morse in connection with the problem of
sound waves in rooms 2.10/

The low-frequency series approximation for Eq. (12.2.20)
gives

- (kx )2 Jk Sx(qlx + ý2x). (12.2.21)

This is a good approximation if both lk Ix qlxI and lk 2x
are less than unity. The equation in the above form
shows the additive effect, at low frequencies, of the treat-
ments on opposite walls. Henceforth, for simplicity, it will
be assumed that all of the lining material has the same
admittance, so that lix = ?2x =- . A similar approximate
equation can be derived for the effect of the linings on the
walls y = 0 and y = -R If the attenuation is then found
from Eq. (12.2.19), the result for a square duct is, to the
approximations employed, the same as that already obtained
at low frequencies with the uniform pressure assumption.

Of more interest, however, is information regarding
the attenuation of oblique waves (higher order modes) which
can be obtained from the wave theory but which cannot be
obtained using the uniform-pressure approximation.

A case involving higher order modes is obtained by
letting the dimension &y be considerably greater than Px, such
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that m pressure nodes exist between the floor and ceiling
of the- duct (y = 0 and y =-y). For simplicity, the floor
and ceiling are considered to be non-absorbing. Then the
y-axis wave constant is given by k y iy = mir. The attenua-
tion constant, equal to -Im(kz), is computed from (12.2.19).
The result is

= -Im[(k #x) 2 - (jx)2(m) 2-j2k x11/2. (12.2.22)

It is still assumed that I kx )I is less than unity. The
term -4x/ y) 2 (mr) 2 makes a large contribution to the
imaginary part of the expression, and therefore to the
attenuation. Thus the attenuation for higher modes (m >O)
is in general greater than that for the principal wave. The
case treated here (long, narrow opening) is most nearly re-
lated to the practical situation found in parallel baffles
(Sec. 12.3), but qualitatively the behavior of oblique waves
is the same in all duct problems.

Experimentally, when a large part of the energy is
carried into the duct in the form of oblique waves, these
higher modes have the effect of making the total attenuation
exceed the calculated value, which ordinarily refers to the
principal wave. There may be a region just inside the source
end of the duct where the signal level drops more rapidly
with distance than is the case further along in the duct.
This first region is the one in which the higher modes are
rapidly reduced. It follows that if the duct is relatively
short, so that this first region occupies a large fraction
of the length, the reported attenuation per unit length
may be considerably greater than the principal-wave value.
Since there is ordinarily no practical way to calculate how
much of the acoustical energy will be carried by the higher
modes this effect can only be estimated on the basis of past
experience with particular structures and sound sources.
The effect is usually significant only for frequencies above
that where the attenuation peak for the principal wave occurs.

Other aspects of the low-frequency approximation are
discussed in the textbook by Morse L._9/•

From the wave theory viewpoint, the approximate solution
for high frequencies is obtained by finding a series expan-
sion for Eq. (12.2.20) which is valid when k.x 1. 2 1.
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If, in addition, the frequency is sufficiently high that
kRx :'(n + 1)r, the resulting expression for the attenua-
tion in a duct with two walls lined is

•x 17.4 (n + 1) 2 (12.2.23)Sx (k Jx) 2 1.2)

Here n is the mode number, equal in this case to the number
of pressure nodes between x = 0 and x = •x. Again, the
attenuation for the higher modes exceeds that for the prin-
cipal wave. Most important, the attenuation is inversely
proportional to the square of frequency in this high-frequency
range. This is the result of an increasing concentration of
acoustical energy in the center of the duct at high frequencies,
thus reducing the amount of energy absorbed by the lining.

If the duct is lined with a porous material, it is
reasonable to expect that the high-frequency form of the
thick-layer impedance approximation will apply in this high
frequency range. As was the case in (12.2.17), ý may be
approximated by /-{h/m, so that the principal-wave attenuation
in distance -x for porous linings on two opposite walls is*

_ 17.-4r m (12.2.24)
(kjx 2

The quantity7/i-7h is roughly equal to unity for most practical
porous linings; thus the attenuation at very high frequencies
is nearly independent of the material.

Other discussions of the duct from the standpoint of
wave theory have been given by Willms 2.5/, Cremer 2.11/ and
Scott 2.12/.

. Scott 2.12! has shown that the high-frequency limiting expression

for the attenuation is proportional to (kQx)&3/2 rather than to
(k-x)2 in the case where the lining is not locally reacting but
is instead a wave-propagating medium. It appears that many prac-
tical blankets and tiles are not locally reacting at high
frequencies and that the Scott result may therefore apply in a
number of cases.
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Theoretical Design Charts for Duct with Porous Lining.

Figures 12.2.2 through 12.2.6 are a series of design charts
to permit rapid calculation from the approximate formulas
which have been developed for the principal-wave attenuation
in a duct lined with porous material. These charts are
constructed for the case in which only a single pair of
opposite walls is lined, for this arrangement is often pre-
ferred for economy and simplicity over four wall lining.
The effect of lining four walls instead of two is, roughly,
to double the attenuation if the lining thickness is kept
constant. The principal wave attenuation can be as readily
increased by making the lining thicker on two walls as by
covering all four walls, however, so that there is no dis-
tinct advantage in four-wall lining in many practical cases.

In order to use the charts, it is necessary to know
the dimensions of duct and lining, and the specific flow
resistance of the porous material i.e., the flow resistance,
in rayls, for a sample one centimeter thick. The attenuation
is given in terms of 6Qx, the attenuation in db in a dis-
tance equal to the passage width •x between the lined walls.
In each case, frequency is read from the horizontal scale
in terms of the parameter Qx/A = f-Qx/c. Each chart
refers to a single value of the ratio t/ x (lining thick-
ness t to passage width Rx). On each chart there are a
number of approximate attenuation-frequency curves; each
curve is for a specified value of the flow resistance para-
meter 91  (where 01 - rIx/lc).

An individual attenuation-frequency curve consists of
three straight-line segments on the logarithmic chart.
These segments represent the three frequency ranges already
studied. The low frequency segment of each curve represents
the relation

2.9h2 Q (k2•)(t/i )3
X X (12.2.25)

X [1 + 2ht/ Q ]1/2
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which is the form taken by Eq. (12.2.12) when two walls
are lined.* In plotting the curves, the porosity h has
been taken as unity.

The middle-frequency segment of each curve is given
by

C 6.2 (hk11/9 )1/2 (12.2.26

This is obtained from Eq. (12.2.16) for the case of two
walls lined. Again h has been taken as unity.

The high-frequency segment is identical for all charts
and is given by Eq. (12.2.24), with /Th7R taken as unity.

The use of broken lines indicates where one of the
lower two approximations has been extended beyond the range
of validity. The arrow on the horizontal axis of each chart
indicates approximately the lower limit of validity of the
thick-layer assumption, basic to the middle approximation.
In some cases it is necessary to use this approximation
below the limit indicated by the arrow.

The method of approximation used in these charts does
not give a good quantitative description of the attenuation
peak, but the results at low frequencies (ox/A 4 0.2) and
at high frequencies (-Rx/A > 1.5) are sufficiently accurate
that the attenuation-frequency function as a whole is fairly
well defined.

Experimental Design Curves for Ducts Lined with Porous
Material. Experimental attenuation data, which have been
obtained for a series of ducts under certain conditions likely
to be encountered in practice, are summarized in the form of
a design chart in Fig. 12.2.7. The experimental chart
covers a more restricted range of conditions than do the pre-
ceding charts. However, the experimentally determined curves

* The discussion up to this point has not been concerned with the
difference between lining only two opposite walls or all four walls.
However, if only two walls are lined, L is defined as the passage
area to the lined perimeter. Therefore, for a square passage area
of length Vx, using this definition L = _x 2/2fx = Qx/2.
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where applicable, will prove more detailed and accurate
in the range of peak attenuation than those based on the
approximate formulas.

The variables plotted on the chart axes are the same
as those for the previous charts - db attenuation in a
length .Qx as a function of Sx/A , where .x is the passage
width between the treated pair of walls. Each curve is
identified by the proper value of t/Sx. The data for
these curves were obtained with structures having the 0 values
listed below:

Value of t/ýQ X

3 1.5

1 3

0.5 4.5

0.25 6

0.1 7.5

These values correspond to a region in which the shape
and height of the attenuation peak are not highly sensitive
to changes in flow resistance. Therefore these design
curves can be applied over an appreciable range of 0 values.
Further experimental data, obtained for the case (t,/x) = 0.25,
indicate that the peak and high-frequency portions of these
curves (Dx/A > 0.3) are not seriously affected by varying 0
between half the nominal value and four times that value.
At low frequencies the attenuation must be approximately
proportional to 0, as indicated by Eq. (12.2.25) and by the
previous charts. A full allowance for this effect of vary-
ing the flow resistance should be made for frequencies
below 9 x/A = 0.1.

The experimentally determined chart represents
conservative values for the attenuation per lengthx in ducts
having lengths up to 15 Qx. When the duct is relatively
short (length less than 4Sx) the observed attenuation per
length 9x in the region of the peak may be about 25 per cent
greater than that shown by the chart. This discrepancy repre-
sents end effects, including the attenuation of higher modes.

WADC TR 52-204 241



The designer who uses the complete theoretical
computation charts will discover that certain critical
combinations of the parameters will give attenuation as
great as 12 db in a length 1 x,2.8/. Unfortunately, the
large attenuation given by these critical combinations is
usually confined to a very narrow frequency band, and may
also be difficult to obtain because of practical varia-
tions in flow resistance of the lining and of dimensions
in actual construction. The empirical chart of Fig. 12.2.7
shows broad-band attenuation which can be expected without
critical design. Because of the effects of higher modes,
the effective attenuation in a practical installation, for
frequencies above the peak, may be well above the values
indicated by this chart.

The results shown in Fig. 12.2.7 are attenuation per
length Qx for a duct having effectively infinite length.
The experimental measurements show that the end effects in
a finite length of duct are approximately explained if a
length Ax is imagined to be added to each end of the duct.
Therefore, the attenuation for a duct which has an actual
length of 3 1x for example, should be computed as though
the length were 5 x.

Under the non-critical conditions represented by
Fig. 12.2.7, the indicated attenuation can generally be
obtained either with two opposite walls lined as indicated,
or, in the case of a duct which is not too far from square
(ratio of passage widths less than 2:1), with the same

Figure 12.2.7

Attenuation design chart, derived from a set of experimental
measurements, for ducts lined on two opposite walls with porous
layer of approximately-known flow resistance. Flow resistance
is not critical for the conditions shown and results are
substantially unchanged when Q varies from half the indicated
values to four times indicated values. The curves may be applied
approximately to ducts lined uniformly on all four sides if per
cent open area instead of (t/lx) is used to specify amount of
lining. To allow for end effects, add 2 Rx to the actual length
of a duct and compute total attenuation from this corrected
length.
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amount of material redistributed to give uniform coverage
of all four walls. For this reason, the parameter (t/ x)
can be represented alternatively in terms of per cent of
open area, and values of this quantity are indicated beside
the curves.

Scaling of Duct Designs. When the designer already
has performance data for a duct which is suitable for the
intended purpose in all respects except size, the entire
design procedure may be replaced by a process of changing
the scale of size of the known duct. The proper method
for scaling is apparent from the parameters which were used
in the design charts. Thus, the attenuation-ftequency
characteristic, if expressed as (Gx) vs. (.Rx/,A), is
independent of the physical size of the duct, provided that
E and (t/jx) are kept constant as the size is varied. This
means that the specific flow resistance of the absorbing
material used in the model will be different from that used
in the full scale design since G-'rL. When L is decreased,
r must be increased by the same factor to keep 0 constant.

When a very costly duct installation is to be designed,
it has proved advantageous to perform tests on a model of
reduced scale and then to use the principles above to transfer
the data to the full-scale case. It is preferable that scal-
ing include length as well as width dimensions, so that a
realistic evaluation of end effects will be included. It is
also desirable that the sound source used in model tests shall
have approximately the relative size, position and directional
properties found in the full-scale situation so that the
higher modes will be excited in approximately the proper rela-
tive amplitudes.

Experimental Results for Specific Installations.
Figure 12.2.8 shows experimental attenuation in octave bands
for several specific duct installations. Included among these
are several designs in which an air space is used behind the
lining. Dimensions and design details for the several cases

* Figure 12.2.8

Attenuation as a function of frequency (in octave bands) for the
lined duct structures of Table 12.2.1. The vertical scale gives
attenuation in decibels for a length of duct equal to the
narrower passage width.
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are given in Table 12.2.1. The performance data for these
designs have proved useful as a basis for scaling.

The performance of structure F illustrates the nature
of a disagreement which sometimes occurs between theory and
practice. This structure, according to the rigorous wave
theory, should have a maximum attenuation of approximately
12 db per width unit of length. The observed attenuation peak
has half of this value, and is broader than the computed
maximum. This is a case where the theoretical design uses a
critical set of values which are not realized because of
practical tolerances.

Commercial Mufflers. Prefabricated circular ducts with
absorbent linings, usually constructed with heavy steel shells,
are available commercially under the generic term "mufflers."
Other structures commercially designated as mufflers including
resonators as well as absorbent linings, will not be discussed
here. The measured attenuation for several commercial mufflers
(Maxim and Industrial Sound Control Products) is shown in
Fig. 12.2.9. Physical data and dimensions for these mufflers
are shown in Table 12.2.2.

Duct with Resonant Lining. The attenuation for a selected
band of lower frequencies can be greatly increased by the use
of a lining which resonates (has a purely resistive impedance)
at the center of that band. This is considered in detail in
Sec. 12.7.

Attenuation in Smooth Pipes. Even if the absorbent
lining were removed from a duct so that the structure could
be considered a smooth pipe, some sound attenuation would
remain. This attenuation results from viscous drag of the air
at the walls, and from heat loss to the walls. Ordinarily
the attenuation resulting from these mechanisms is smaller by
orders of magnitude than that in a lined duct and is therefore
neglected in duct calculations. Attenuation in smooth pipes
is discussed briefly in Sec. 12.15.

Effects of Nonrigid Side Walls. The discussion in this
section has assumed that the duct enclosure is formed by

Figure 12.2.9

Attenuation as a function of frequency (in octave-bands) for
the commercial mufflers of Table 12.2.2.
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TABLE 12.2.1

INFORMATION ON DUCTS FOR WHICH ATTENUATION IS GIVEN IN FIG. 12.2.8, MINI-

MUM LENGTHS, 10 FT, MICROPHONE PLACED AT 2 FT INTERVALS FOR ATTENUATION

MEASUREMENTS

Duct A B C D E F

Dimensions of
open areas, ft 3.8x12 2.3x30 2.3x30 3x30 lOxlO 4x4

Number of
sides lined 2 2 2 2 4 4

Lining thick-
ness, inches 16 4 6 6 6 2.4

Lining
material* 2.5#PF 6#PF 3#PF 3.5#PF 3#PF 5.5#PF

Depth of Air
space behind
lining, inches 0 0 12 16 24 9.6

Frequency
bands for mea-
surement 1/3 oc- octave octave octave pure pure

tave tone tone

Jet Reciprocating engine pure pure
Sound source engine tone tone

3
* Linings of PF Fiberglas, figures give density in lb/ft
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TABLE 12.2.2

INFORMATION ON COMMERCIAL MUFFLERS FOR WHICH ATTENUATION IS GIVEN IN

FIG. 12.2.9, ALL LENGTHS 15 FT OR GREATER

Muffler A B C D

Inside
diameter,
inches 22 36 72 36

Lining
thickness, (a) 2 in.
inches 3.5 3.4 5.3 (b) 4 in.

Lining Copper Copper Copper (a) Monoblock
material wool wool wool (b) JM-305 PF

blanket

Air space
behind
lining,
inches 13 17.5 20 0

(a) layer next to air stream

(b) layer between a and shell
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acoustically rigid, impervious walls. This assumption is
reasonable for concrete or masonry ducts and usually for
metal or wooden ducts with heavy walls. The assumption is
not valid for the lower frequencies (several hundred cycles
per second and lower), however, in the case of light sheet
metal ducts used in ventilation systems. Evidence of the
effects of nonrigid walls is found in Sabine's measurements
2.1, 2.2/. Nonrigid walls cause the low-frequency attenua-
tion to exceed calculated values. The amount of this effect
cannot be estimated accurately except on the basis of
experience with full-scale structures. Furthermore, nonrigid
walls radiate sound. In a case where large attenuation is
required, side-wall radiation from a light structure may
constitute an acoustic leak great enough to negate the
attenuation in the duct. The amount of sound transmitted
through the duct walls may be estimated using Secs. 11.2 and
11.5.

Summary of Design Methods for Lined Ducts. The tabular
summary below shows the applicability of the various design
equations and charts which have been presented in this sec-
tion and will facilitate reference to them. The statements
as to restrictions on the uses of the various relations are
greatly simplified for compactness in this listing. More
accurate statements of the validity conditions have been
given in the previous discussion of the individual relations.

The symbols listed and defined below are consistent
with the usage in the preceding parts of this section.

Swavelength of sound in o~pen air

acoustic admittance ratio of the lining

/A real part of

c( chamber absorption coefficient

qnormal free-wave absorption coefficient

t thickness of lining

L passage area divided by passage perimeter

k. narrowest passage width
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A. Design methods for low frequencies - \ 'x

I. Relations where lining is described by admittance
or absorption data

Nature of Data
on Lining Ma- Further

terial Use Equation Restrictions

known 12.2.3 I 4I -.< 1

AL known 12.2.5 <• (< 1,
and t << L

Cc known 12.2.6 < < I,
and t < < L

a known 12.2.6a t </, L
If duct nearly square,
results useful for A
as small as one-third
of greatest width.

II. Relations where lining is a porous layer of known
flow resistance

12.2.12 or low- t < //1O and other
frequency segments restrictions; range
of Figs. 12.2.2-6 indicated in Figs.

12.2.2-6

12.2.16 or/middle- -x < -•8t
frequency (segments
of Figs 12'.2.2-6

B. High frequencies - > A

12.2.24 or high- x several times
frequency segments
of Figs. 12.2.2-6
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C. General theoretical methods - all frequencies -
impedance data available for lining. Use method given by
Morse 2.8, 2.9/ and discussed by Beranek 2.2/

D. Design from experimentally determined charts - all fre-
quencies - flow resistance of porous lining known very
approximately. Use Fig. 12.2.7, where applicable.

E. Design by scaling from specific cases, including instances
with air layer behind lining. Flow resistance of materials
must be known for scaling. Use scaling principles with Fig.
12.2.8, where these specific designs are applicable.

Note Added in Publication

Simplified Procedure for Duct Calculations by Exact Wave
Theory. Cremer 2.13/ has developed charts giving the attenua-
tion coefficient that would be found by solving Eq. (12.2.20)
by the rigorous wave theory. While these charts cannot be
applied to an arbitrary frequency (except in the frequency
ranges far below or above the attenuation peak), they have the
advantage of showing in simple form, at certain frequencies,
the relation between lining impedance and attenuation. This
relation is not apparent in the more general charts of Morse.

The Cremer charts are shown in Figs. 12.2.l0-14. The
first and last of the series of five charts represent respec-
tively the low-frequency and high-frequency cases corresponding

FIGURE 12.2.10

This chart gives FP as a function of 9 and JIý/F. F is a
frequency parameter equal to 2 -x/ N A, 0 is the phase angle
of the normalized impedance 4r and II is the magnitude of the
normalized impedance; 0 is the attenuation parameter, defined
as 1/a2t times the duct attenuation in nepers per wavelength.
This chart is valid for low frequencies.
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to Eq. (12.2.5) and (12.2.23). The first chart is more
general than Eq. (12.2.5) for low frequencies, however, as
the chart is correct for any lining impedance, whereas the
equation assumes a "hard" lining. In the case of any imped-
ance value which is too large for the chart, the approximate
equation gives sufficient accuracy. In addition to the two
charts for low and high frequencies, there are three charts
that apply when the wavelength of sound bears certain speci-
fied ratios to the passage width. The Cremer charts apply
to a duct with two opposite walls lined, or with one wall
lined. Where the attenuation constants for two different
modes of propagation are nearly the same, the chart value is
for the mode having the lower attenuation, in order that the
attenuation will not be overestimated. The use of the charts
is illustrated below by a numerical example. The symbols,
some of which have been given previously, are defined below,

N number of walls lined (one or two)

F frequency parameter, equal to 2 xQ/N -A

Spassage width normal to lined wallsx

0- attenuation constant in db per unit length

r normal impedance index of lining (reciprocal of

0 phase angle of 1 in degrees, positive values
representing mass-like impedance

attenuation parameter, equal to (1/2r) times attenua-
tion in nepers per wavelength

Suppose that it is desired to calculate the attenuation,
for various frequencies, for a duct having a passage width of

FIGURE 12.2.31

Same as Fig. 12.2.10, but for a frequency parameter F = 0.25.
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ýx = 34 cm, lined on two sides. The calculation can be done
for low frequencies (say, F K 0.I), for high frequencies (say,
for F 2z- 3), and for the frequencies representing F values of
0.25, 0.5, and 1.0. From the definition of F, these values
represent frequencies of 250, 500, and 1000 cps in the present
example. To proceed further, it is necessary to know the lin-
ing impedance for frequencies at which the attenuation is to
be found. The values tabulated below will be used for

Frequency, cps 80 250 500 1000 3000

F 0.08 0.25 0.50 1.0 3.0

S9.0 3 .0 1 .5 1 .3 1 .2

•, degrees -79 -26 -13 -6.6 +13

9/13.2 -6.0 -2.0 -1.0 -0.5 +1.0

SF 0.0222 0.184 0.212 0.086

SF 2  0.054

(db in distance 1.2 10.1 11.6 4.7 1.0

Also shown in the tabulation are the values of the attenuation
in the form PF or ý F 2 as given by the various charts, and
finally the attenuation values reduced to o-•x (that is, db
in the distance -Qx)" The relation between VF and 5-Qx is

Cr-• = 27.3 NFf

This relation follows directly from the definitions.

While only one frequency in the range of F > 3 is shown,
and only one in the range F '• 0.1, calculations can be car-
ried out in these ranges for any number of frequencies for

FIGURE 12.2.12
Same as Fig. 12.2.10, but for a frequency parameter F = 0.5
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which the lining impedance is known. The results for fre-
quencies near the peak are restricted to the frequencies
corresponding to the three intermediate charts.

Use of these charts is to be recommended whenever
duct attenuation is to be calculated on the basis of a known
lining impedance. While the results do not show in detail
the sharp attenuation peak which is shown by careful use of
the Morse charts, they do show the peak in sufficient detail
for design work dealing with wide-band noise, and in much
more detail than the charts in Figs. 12.2.2-6. The latter
charts, on the other hand, are simpler to use than the Cremer
charts in the special case for which they are intended, where
the lining is a porous blanket.

Difficulty in obtaining normal impedance data for the
lining will to some extent limit the use of the Cremer charts.
Normal impedance data for a few materials are given in
Sec. 12.1. Normal impedance for porous blankets may be calcu-
lated from Eq. (12.1.14) or, for long wavelengths, from
Eq. (12.1.19).

In the Cremer charts, Figs. 12.2.10-14, the values of
lining impedance which give greatest attenuation are evidenced
by inspection. Cremer 2.13 gives the following simple for-
mula for the optimum lining impedance index as a function of
frequency:

optimum = 1.2 e-0"7i(2N Sx/l ) (12.2.27)

Fora duct having the lining impedance versus frequency
characteristic given by this relation, the attenuation if one
wall were lined would be 19 db per distance Rx up to F = 0.3;
for higher frequencies the attenuation would be (3.5 h/Qx) db.
These figures would be doubled if two sides were lined. All
actual ducts, in which this ideal impedance behavior cannot
be perfectly realized, will have an attenuation versus fre-
quency characteristic which lies below the one given by the
preceding values.

FIGURE 12.2.13

Same as Fig. 12.2.10, but for a frequency parameter F 1
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FIGURE 12.2.1.4

Same as Fig. 12.2.10 but for "high" frequencies,
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12.6a The Resonator as a Free-Field Sound Absorber

The use of the resonator to attenuate sound in a
duct was considered in Sec. 12.6. Another use, that of
absorbing sound in rooms, is considered in the present sec-
tion. In this application, the behavior of a resonator
is best described by giving its sound absorption in sabins,
rather than by giving a pressure reduction ratio.

The effect of a resonator in a room, for frequencies
near the resonance, is similar to that of a patch of highly
efficient sound absorbing material. The reduction of smnd
pressure in the room is dependent upon the position of the
absorbing element, as pointed out in Sec. 12.1. Therefore,
the sound absorption of a resonator can be stated only for
specified positions in the room. Two idealized cases will
be considered, namely, (a) the resonator in open air (free
field); (b) the resonator with its opening in a plane wall
bounded by open air. The practical situations represented
by a resonator near the center of a room, or by a resonator
in a room wall, are approximations to these idealized cases.

The properties of a resonator as a sound absorber are
summarized briefly in the next paragraph. Following the
summary, a brief derivation of the equations for the resonator
in free field is given. In the remainder of the section, the
roles of the various parameters are considered in detail, and
design procedures are developed.

Summary of Properties of the Resonator as a Sound
Absorber.

(1) The maximum absorption of a single resonator,
in sabins, is approximately ?\2o /4) if the resonator is in
substantially free air, and is A20 /2r if the resonator open-
ing is in a large wall, where ?o is the wavelength of sound,
in feet, at the frequency of resonance.

(2) The minimum Q (corresponding to maximum bandwidth)
which can be obtained in a practical resonator having maxi-
mum absorption of the amount indicated above is about 25 for
a resonator in free air, or about 13 for a resonator having
its opening in a wall.

(3) The width of the frequency band in which the
absorption is not less than half the value found at resonance
is equal to the frequency of resonance divided by Q.
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(4) While the bandwidth of the absorption can be
varied over wide limits by adjusting the size of the resonator
and the resistance material placed in the aperture, the ab-
sorption for all frequencies decreases greatly as the band-
width is increased, so that it is usually not profitable to
reduce the Q below the values given in (2) above.

A resonator is, therefore, useful primarily when
relatively large sound absorption is required in a narrow
frequency band. The resonator has great practical value
particularly for frequencies below about 200 cps, where it
is often difficult to obtain large absorption by other me-
thods. For example, a resonator (or a group of resonators
not too close to one another) can be used effectively to
reduce the 120 cps "hum" in a transformer room. A group of
resonators tuned to successively larger frequencies is some-
times used to give sound absorption in a wider frequency
band.

Tle Absorption Cross Section. A resonator placed in
a progressive plane wave absorbs energy at a rate proportional
to the intensity of the wave. The power absorbed by the re-
sonator can be expressed as the power which the undisturbed
plane wave would deliver in some effective area, caa
perpendicular to the direction of wave travel. The quantity
aa is the absorption cross section of the resonator; if

expressed in square feet, the absorption cross section becomes
the absorption in sabins. The absorption cross section at
resonance will be denoted by % 0 . (The subscript zero with
any quantity will always refer to the resonance condition.)

For purposes of analysis, the resonator is assumed
to have the spherical shape shown in Fig. 12.6a.1, where the
symbols for the dimensions are also shown. In all practical
designs, the resonator is small compared to the wavelength
of sound at resonance, 'A Therefore, diffraction effects
may be neglected, to a fyrst approximation, and the rms
acoustic pressure at the opening is equal to P., the rms
pressure in the incoming plane wave. If the resonator is
mounted in a wall, the pressure at the opening becomes 2P ,

because of reflection at the wall. Both of these situati 8 ns
will be covered by writing the driving pressure as < 2> E,.
Throughout this section, a quantity enclosed in broken
brackets is understood to apply only when tne resonator is
mounted in a wall, and is to be replaced by unity if the
resonator is in free air.
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Z ,ACOUSTIC IMPEDANCE OF OPENING

PRESSURE V, VOLUME
AMPLITUDE OF INCIDENT
PLANE WAVE

tWALL THICKNESS

A, APERTURE AREA

UVOLUME VELOCITY AMPLI71IDE IN APERTJURE

FIGURE 12.6a. 1

Sketch of resonator, showing definitions of several quanti-
ties used in the analysis.
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Let Z be the acoustic impedance at the resonator open-
ing, and let R be the real part of Z. The aperture resis-
tance R is the sum of two quantities, Ri, the resistance
representing losses within the resonator and at the opening,
and Rr, the resistance associated with re-radiation of sound
by the moving air in the aperture. The volume velocity in
the opening is < 2> Po/ IZI . The power dissipated in the
resonator is Ri times the square of the volume velocity, or
<40 Po 2 Ri/ IZ 2 1 . By definition of the absorption cross

section, the power absorbed is also equal to daPo 2 /pc, since
P 2 /1pc is the intensity of the incident wave. Thus, the
absorption cross section is

ca = <4?pcRi/ Iz 2  (12.6a.1)

It will be shown how the absorption varies with frequency,
with the physical properties of the resonator, and with
sound pressure.

The maximum absorption of a given resonator occurs at
the resonance frequency fo, where the resonator impedance Z
is simply equal to Ri + Rr. The resonance absorption cross
section is therefore

Sao <=4pcRiao (R i + R r)2

It is assumed that the circumference of the resonator aper-
ture is appreciably less than the wavelength of sound. This
makes it possible to approximate the radiation resistance
by R = <20 pcr/X2 , where X is the wavelength. The
resonance-frequency absorption cross section then becomes

<2> X02(Rid
'r /0 -\w.r 2 (12.6a.2)

o (1 + Ri/Rr)

This function has a maximum value of (2) No2 /4Y when
(Ri/R ) = I. A slight correction to this calculation will
be introduced later.
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Variation of the Absorption Cross Section with
Frequency. The acoustic impedance of the aperture can be
expressed as

Z = R[I + JQ(y - 1/7)] (12.6a.3)

where

' = f/fo

Q = 2rMfo/R

R=R. +Rr

M = acoustic mass of air in the resonator
opening; see Eq. (12.6a.5).

It follows that, if the relatively slow variation of
R with frequency is neglected, the variation of absorption
with frequency can be expressed in the form

a ao = [1 + Q 2(7 - 1/T) 2 ]- 1  (12.6a.4)

The bandwidth, defined as the frequency range within which
Sa is not less than one-half of Cao, is given by BW = fo/Q-

The acoustic mass of the air in the resonator opening is
proportional to the "effective" length of the opening, equal
to the wall thickness t plus anrf"end correction" 5. This
end correction is proportional to the radius of the aperture
and accounts for the fact that some air not directly in thý
resonator opening moves as if it were in the opening. For
a small opening in a large flat'plate, the end correction
is b' = 1.70 ro = 0.96 ,/ where A is the area of the
aperture. The value given for M in Sec. 12.6 is derived on
this basis. In many cases 6 is somewhat different from 6';
typically, P = b/5' is about 0.9. The acoustic mass may
be written as

M = t + _ 1.70 pro tA = A ( + 0.59 (12.6a.5)
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Methods for computing P in certain special cases are given
at the conclusion of this section. For present purposes, the
value • 0.9 will be assumed.

The frequency of resonance, fo, can be computed by the
procedure of Sec. 12.6; it may be expressed as:

fo = 0.666 (c/2ra) r/a 1/2(12.6a.6)
P + 0 .59 r--

Total Aperture Resistance at Resonance. The internal
resistance of the resonator is the sum of the frictional
resistance due to air flow within the aperture, the resis-
tance due to air flow over the surfaces at the ends of the
aperture, and the acoustic resistance due to any cloth or
screen which may be placed in the aperture. The values of
the first two contributions are approximately 6a.l

Frictional acoustic
resistance within aperture = 2tRs/Ar 0

Frictional acoustic

resistance of end surfaces = 4Rs/A

where Rs= [7,pf]l/2

Here )I and p are respectively the viscosity and density of
air, as in Sec. 12.6. The acoustic resistance due to the
cloth or screen will be described by introducing the para-
meter o

+ R'

where R' is the flow resistance in rayls* of the cloth or
screen.

* The flow resistance RI must not be confused with the other acoustic
resistances and impedances. By definition, acoustic impedance is
impedance in rayls, divided by aperture area.
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The total internal acoustic resistance (that is, the
resistance other than that due to radiation) is then
expressible as

Ri = 4R s/A PE + 0.5 -] (12.6a.7)

Excep.t for the introduction of a resistance due to a screen
or cloth, this is equivalent to Eq. (12.6a) in Sec. 12.6.

The acoustic resistance due to radiation will be
expressed by the approximate relation

Rr = <2) pcw/A 2

as already noted. In order to incorporate this resistance
in a fashion which is convenient for the final design for-
mulas, it is necessary to define two dimensionless parameters,;
h and C, as follows:

( o + 0.59 rt )2

h + 0(12.6a.8)tE+o0.5r

CE. (k 0 a)-6 (RrRiR) (12.6a.9)

Here k denotes 2w/, , or 2w f O/. The latter parameter
is given by

C - 0.316 <2? hpc/Rs , (12.6a.10)

as may be shown by combining Eqs. (12.6a,b) through (12.6a.9)
Therefore the total resistance R = Ri + Rr can be expressed
as

R = (4Rs/A)(C + 0.5 t-) [1 + (k a)6 C] (12. 6 a.11)
0
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It is useful to notice that if no cloth or screen is used,
C is equal to unity, and if also (t/ro) <( 1, then also
h is approximately equal to unity.

Resonator Formulas in Terms of Generalized Parameters.
The basic resonator formulae, when expressed in terms of
the dimensionless parameters (koa) = 2rfo/c, are suitable as
a basis for orderly design work or for the construction of
general design charts. The relations below, which give the
absorption cross section, the Q, and the reverberation time
of the resonator, are particularly useful.

The absorption cross section at resonance is

2 6< 2> Ao 04(k 0 a) CF

•ao = [I6 2 (12.6a.12)

where

F = 1 + 9 (k 0 a) 2  (Resonator in space)

F = 1 (Resonator in wall) I

The correction factor F, which is of the order of 1.2 in a
practical resonator in space, is obtained by detailed wave-
theory analysis of the spherical resonator.

The generalized expression for the Q is obtained by
combining the expressions for fo and M to give

2 rMfo0 = 0.240(2f 0 ) p/a(k0 a) 2

and by combining the expressions for R, fo , and C to give

R = <2> [0.0793 pc/a 2 (k 0 a) 4C][l + (koa) 6 C]

Thus, the Q, which is equal to 2rMfIR, is given by
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_3 * 0 _3 (k 0 a) 3C (12.6a.14)
(2) 1 + (k 0 a )6C

The reverberation time (the time for the power re-radiated
by the resonator to decrease by 60 db after the external
signal ceases) is equal to 2.19 ýlf 0 Therefore, the re-
verberation time is

T = 6.65 1 (k 0 a)3C 67
:ýo 1 + (k 0 a) C

Optimum Design Values. When values are assigned to
two of the three quantities fo (frequency of resonance), h
(hole parameter), and V (cavity volume), there then exists
an optimum value for the remaining parameter such that the
resonance absorption cross section U'aO will be as large as
possible. For the resonator in space, this maximum possible
value of 07 for any given set of conditions usually lies
between XO/4 and 1.5 (-,\02/4r). These limits correspond to
values of F between 1.0 and 1.5. The calculation of optimum
values where fo and the hole parameter h have already been
chosen will be considered here. The value of h is dependent
upon choices of t/ro and E , the latter quantity being an
index of the amount of flow resistance introduced by a
cloth or screen. The problem is then one of finding the
optimum value of the spherical cavity radius, al, for which
the absorption cross section is maximum. The subscript 1
will refer to an optimum value.) The required value of the
aperture radius, ro is also easily found.

Since the frequency is given, the quantity C is a
constant. From Eq. (12.6a.12) it is found thatAe maximum
absorption cross section is obtained when (koal C = 1, or

k 0 a i = 1.08 1/b [47rjjpf 01 1/12 (12.6a.16)
( <2) ech)

When numerical values for room temperature are inserted,
the optimum sphere radius is
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a1 = lO80 fo-11/12 h-1/ 6 cm (resonator in space)

a1 = 963 fo-11/12 h-1/ 6 cm (resonator in wall)

(12.6a.17)

For a cavity having the optimum radius a1 , the absorption,
the Q, and the reverberation time are given by the relations
below where the numerical forms are for room temperature
(700F).

0'al = (ho 2/4-)F (12.6a.18)

Q1 = 0.85(hpc)1/2/[ (7r4pfo)l/4 < V = 189 V-h/(fo 1/4< /Y-2 )

(12.6a.19)

T1 = 1.87(hpc)l/2/ (7rp)I/ 4 f o/ 40 ' 1=415 fi-h/(fo5/ 4<--2,>)

(12.6a.20)

Sometimes, when the optimum value of a has been obtained,
it is desirable to be able to calculate directly the change
in the above quantities which will result from changing to a
non-optimum value for a. For this purpose, the equations
can be rewritten in the normalized forms

a-- =4(IB6)62 (12.6a.21)
'5al (1l+ B)

T Q _ 2B3

T1  Q1 1 + BE (12.6a.22)

where B = a/a 1
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Almost all calculations necessary to evaluate the
optimum resonator design, for given resonance frequency
and hole parameter, can be performed using the charts of
Figs. 12.6a.2-7. For those calculations which involve P ,

the value 1 = 0.9 has been used in constructing the charts.
Room temperature values of the air constants have been used,
and where the relations for resonator-in-space differ from
those for resonator-in-wall, the charts apply to the in-space
case. The use of the charts is explained below.

Procedure for Optimum Design Calculation. It is assumed
that the resonance frequency and the hole constants (the
ratio t/ro and the flow resistance of the cloth or screen in
the aperture) are known, and an optimum design is desired.
Alternatively, if the value of the hole parameter h is known,
the first step in the calculation is reversed, and possible
values of t/ro and of flow resistance are found which will
permit the desired h value to be realized. The calculations
may be made in the order shown below.

1. Compute h, from known values of t/ro and of flow
resistance R', from Eq. (12.6a.8) or from Fig. 12.6a.2.
The chart assumes 0 = 0.9.

2. Compute the optimum cavity radius, a1 , from
Eq. (12.6a.17) or from Fig. 12.6a.3. (For resonator-
in-wall, multiply result from chart by 2-1/6 0.890.)

3. Compute koal = 2.fOal/c, or obtain this quantity
from Fig. 12.6a.4.

4. Compute ro/a (and hence ro) from Eq. (12.6a.6) or
obtain this value from Fig. 12.6a. 4 . The chart
assumes P = 0.9.

5. Compute F from Eq. (12.6a.13).

6. Compute the maximum absorption cross section,

al 2 F 02/4.

7. Compute Ql from Eq. (12.6a.19), or from
Fig. 12.6a.5. The bandwidth in which the absorption
cross section is at least (ral/2 is BW = fo/Ql.
(If the resonator is in wall, multiply result from
chart by 1/ V7.).
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8. If desired, obtain the reverberation time T, from
Eq.(12.6a.20) or from Fig. 12.6a.6. (If resonator
is in wall, multiply result from chart by 1/ -/2.)

9. If it is desired finally to explore the effect of
changing to a cavity radius a other than the
optimum value a , consult Eqs. (12.6a.21,22) or
Fig. 12.6a.7. lNot valid if resonator operation
is in the nonlinear orifice resistance range, see
Sec. 12.6 and the later discussion in this section;
Eq. (12.6a.31) gives the non-linear resistance.)

Selection of Efficient Design. The calculation pro-
cedure outlined above shows how to obtain an optimum set
of related values, once the resonance frequency and the
hole parameter are specified. Some further consideration
must be given to indicate on what basis the designer can
make the original choice of the hole parameter h, and to
show certain other practical aspects of the design problem.

1. The smaller values of h correspond to resonators
having relatively large volume, but relatively low Q and
hence relatively large bandwidth. Conversely, the larger
values of h correspond to small-volume, high-Q, narrow-
band resonators.

2. Small h is obtained by use of a short-neck
aperature (t/ro << 1) in which a cloth or screen has been
introduced to increase the resistance ( E > 1); larger
values of h are obtained with apertures having longer necks,
with no'added resistance.

3. The basic equations are not applicable unless the
radius of the aperture is appreciably less than the radius
of the cavity. In practice, it is considered that ro/a
should not exceed 0.3. At any given frequency, this
requirement indirectly determines the smallest value of h,

FIGURE 12.6a.2
The hole parameter, h, when the flow resistance parameter, E, and
the ratio t/ro of aperture thickness to radius, are known. The
chart represents Eq. (12.6a.8) for the case 0.9. From
Ingard k&.lI.
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and hence the smallest Q, which can be obtained. This is
because ro/a increases with increasing resonator volume, and
hence with decreasing h. (It will be shown that the Q, can-
not be less than 25 for optimum-design resonators in space,
or less than 13 for the wall location, if the restriction on
(ro/a)is observed .

4. From the foregoing considerations, it follows that
efficient design (minimum volume used) for a resonator which
is to absorb sound of only one frequency is obtained when
the aperture (neck) length t is made several times the aper-
ture radius ro, and no additional resistance is added. This
design results in small volume, large Q, and small bandwidth,
but the absorption obtained at resonance, with an optimum
combination of values, is always ?o0

2/2r for the resonator in
a wall or of the order of ?o 2/44ir for a resonator in space.

5. The greatest possible absorption in the greatest
possible bandwidth, for a single resonator, is obtained by
putting (t/r << 1, and choosing the largest allowable
volume, which corresponds to (ro/a) = 0.3. Optimum design
is then completed by finding the value of h for which the
resulting cavity radius al is an optimum value, and selecting
a cloth or screen of suitable flow resistance to give a value
of E which will result in this selected value of h.

6. The effect of using a cavity radius a other than
the value which is optimum for a given f and h is to decrease
the absorption Crao at resonance and to increase the bandwidth,
in such a way that the product c-ao(BW) 2 is constant.
Specifically, the relation is

5ao (BW) 2 = >4? 2.8F vrf/h (12.6a.23)

FIGURE 12.6a.3

The optimum radius, al, for a spherical resonator cavity when the
frequency of resonance Fo, and the hole parameter h, are given.
This is for air at room temperature only. For a resonator in space
this chart is the same as Eq. (12.6a.17). Multiply result by 0.890
if resonator opening is in or very near the wall. From Ingard ,k../

WADC TR 52-204 277



where 6ao is in ft 2 (sabins), and BW and f are in cps.
This relation may be obtained by combining eqs. (12.6a.12),
(12.6a.14), and (12.6a.10). For optimum design, '-ao is
equal to C-al, or F )ýo2 /4r, and for other designs Y-ao is
less than that value.

7. From Eq. (12.7a.23) or from the basic equations,
it follows that the optimum design (the design which maxi-
mizes absorption for a given h) represents the maximum
possible Q for a given h.

8. By further interpretation of Eq. (12.6a.23), it
is found that a departure from the optimum design, for a
given h, reduces the absorption not only at resonance but
at all frequencies, even though the Q is decreased. For
this reason, it is preferable to use optimum combinations
of values except in unusual circumstances where a low Q is
absolutely necessary and greatly reduced absorption can be
accepted (or in cases where nonlinear effects necessitate
a reduced Q, as will be shown later).

9. The cavity need not be spherical, but can have any
shape for which the volume is equal to 4ra 3/3, and which
presents a sharp change of cross section at the aperture.
Similarly, the aperture can be square rather than circular,
if the same area is maintained.

10. The analysis does not consider interactions be-
tween adjacent resonators tuned to the same frequency, and
applies only when the separation between individual
resonators tuned to the same frequency is Xo/2 or more.

FIGURE 12.6a.4

Relation between the resonance frequency and the resonator dimen-
sions, for air at room temperature. The broken lines give the
resonance frequency Fo, in cps, as a function of k0a, for various
values of cavity radius a. The solid curves, which represent
Eq. (12.6a.6) for the case P - 0.9, relate rda to koa for various
values of t/ro. Aperture thickness, t; aperture radius, ro;
IC= 21rfdc; c is the speed of sound. From Ingard _
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The case of a large area continuously covered by resonators
tuned to the same frequency is treated in Sec. 12.1, under
the topic of perforated facings for acoustical materials.

11. Adjacent resonators can be considered non-interacting
when the difference in the resonance frequencies is greater
than either of the bandwidths. When this restriction is ob-
served, the analysis applies to banks of adjacent resonators
which are "stagger-tuned" to cover a wide band of frequencies.

12. When short-neck resonators are used in an optimum
design, as is necessary to secure large bandwidth, the band-
width is proportional to the resonator volume. Therefore,
the volume occupied by a "stagger-tuned" array for a given
frequency band is a constant for optimum design, no matter
whether, say, n resonators are used with one set of Q values,
of 2n resonators are used with individual Q's twice as large.

Simplified Design for Short-Neck Resonators. It is
evident from the preceding list of design considerations tht
resonators intended for large bandwidths represent a special
case in which the neck is very short, or t/ro = O. The
design procedure can be greatly shortened for this condition.
The simplified relations for the short-neck resonator are
given below, with numerical coefficients given for the case
of room temperature air and P = 0.9. These relations
represent optimum-design combinations; that is, combinations
which represent maximum possible resonance absorption and
maximum possible Q for a given resonator opening at a given
frequency.

The optimum volume, in terms of the optimum Q and the
frequency of resonance, is

- 3.53 x 10 (12.6a.24)<2) Q1 fo3

FIGURE 12.6a.5

The Q value, Q1, obtained in an optimum resonator design when the
frequency of resonance in cps, F0 , and the hole parameter, h, are
given. Represents Eq. (12.8a.19P for air at room temperature.
From Ingard .
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Here V1 is in ft 3 , and fo in cps. This relation is derived
by combining Eqs. (12.6a.17) and (12.6a.19). The required
aperture radius is

ro = 1.90 x 10-4 f0 V1  (12.6a.25)

where ro is in inches, fo is in cps, and V1 is in ft 3  This
relation follows from Eq. (12.6a.6). Using Eq. (12.6a.24),
the radius (in inches) can also be expressed as

ro = 6.70 x 103/fo0 , <2> (12.6a.26)

While the value of h, the hole parameter, is not
required for the present calculations, it is helpful to be
able to compute this quantity in order to refer back to the
more extensive design charts. From Eq. (12.6a.19), the
value of h for the present special conditions is

h= <2> 2.82 x 10- 5  vm 2f- 2

where f0 is in cps.

The required flow resistance of the screen of cloth
in the aperture is found by combining (12.6a.27) with
(12.6a.8), and making use of the definition of E . The
required added flow resistance in rayls is given by

Rt = 191 -(3.26 x 10-3) V7 (12.6a.28)
<2) Q2 0

The maximum allowable volume for a resonator repre-
senting an optimum combination of value is wt by the condi-
tion (ro/al) "( 0.3. The value of this maximum allowable
volume is found by writing Eq. (12.6a.25) in the form of a
relation between ro and a1 , imposing the required

FIGURE 12.6a.6

The reverberation time in seconds, T1 , obtained in an optimum
resonator design when the frequency of resonance in cps, Fo, and
the hole parameter, h, are given. This represents Eq. (12.6a.20)
for air at room temperature. From Ingard .
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conditions, and then finding the volume from the resulting
value for a 1 . The resulting restriction on the volume is

V < 1.4 x lO6 ft 3  (12.6a.29)

0

The minimum Q which can be obtained with optimum design
conditions is obtained in a resonator of maximum volume, and
is found by combining (12.6a.29) and (12.6a.24). This mini-
mum value of Ql is approximately 25/( 2>. Correspondingly,
the minimum reverberation time in optimum designs is approxi-
mately

Tm 55/ (2> fo sec. (12.6a.30)

Finally, the procedure for obtaining the optimum design
of short-neck resonators can be summarized as follows:
decide upon the desired resonance frequency. Then choose a
resonator volume not exceeding the limit given by Eq.(12.6a.29),
or choose a Q not less than 25/<2> . The remaining design
quantities can then be found directly from the preceding
equations if the resonator operates in air at room temperature.

The numerical coefficients, and the limiting values of
the volume and the Q, will be different if other values of
the density and the viscosity of the gas are used, and it will
be necessary in that event to go to the basic equations given
previously in this section.

FIGURE 12.6a.7

The relative effects upon the resonance absorption cross section,
raoo, the reverberation time, T, and the Q, when a departure is

made from optimum resonator design. It is assumed that the
resonance frequency fo and the hole parameter h retain the values
for which the optimum cavity radius al applies, but that the cavity
radius has been changed arbitrarily from a1 to some value a, and a
corresponding change made in the aperture radius. From Ingard k-.j/.
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Effects of Non-linearity. The internal resistance of
the resonator includes a non-linear contribution which be-
comes important when the resonator is exposed to large
incident sound pressures, as was found in Sec. 12.6 in
connection with the design of a resonator attached to a duct.
The effect of non-linearity may become significant when the
SPL of the incident signal exceeds 80 to 90 db, but in
large, low-frequency resonators this threshold may be much
higher. The effect of the non-linear resistance is to de-
crease the resonance absorption and the Q of the system.
To include the non-linear resistance in the basic equations
would lead to results so cumbersome as not to be highly
useful. Therefore, only special aspects of the problem
will be considered.

In the general case, the non-linear resistance depends
upon the orifice thickness, the particle velocity, and the
particle displacement. The effect of frequency is
apparently not great, but this question has not been ex-
plored extensively. Non-linear resistance data are experi-
mental, because no general theory has been given yet. For
the present purposes, an empirical relation 6a.l/expressed
by Eq. (12.6a.31) will be used for the non-linear resistance.
This relation is. more accurate over a wide range of condi-
tions than the one used in Sec. 12.6, although both formulas
lead to approximately the same value of sound pressure at
which the response of the resonator is seriously affected
by non-linear resistance. Only the effect of particle velo-
city is shown, since this is the variable of major importance
in the non-linear resistance unless the particle displace-
ment amplitude exceeds the orifice thickness. The non-linear
acoustic resistance is

RNL = 1.36 x lO-5 u 1 .7 /A 2 "7  (12.6a.31)

where U is the rms yolume velocity in cm3/sec and A is the
aperture area in cm .

The effects of the added resistance RTL upon the Q and
the peak absorption of a resonator designed to meet optimum
conditions in the absence of the non-linear resistance are
easily expressed. The total resonator resistance is Ri + Rr;
in the optimum design, this is simply 2 Rr. When non-linear
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effects are present, the total resistance is 2Rr + RNL.
Thus the Q, which is inversely proportional to resistance,
is changed according to the relation

QNL 2R 2 (12.6a.32).Q- r R+ RNL

The effect upon the resonance-frequency absorption cross
section is found by inserting the appropriate resistance
values into (12.6a.2). It is convenient to express the re-
sult in terms of the change in the a,, by using (12.6a.32).
This leads to the relation

aoN _ QN (2 - )(12.6a.33)
Tal1

The sound pressure required to bring the q down to
the value QNL will be calculated in the special case where
the resonator represents an optimum design combination
characterized by 'Ql for small sound pressures. Because of
the cumbersome manner in which the nonlinear resistance
enters into the resonator equations, the procedure to be
followed in this and other related calculations is to solve
the non-linear resistance expression for the volume velocity,
and to work back from this to find the pressure. The pro-
cedure is shown in sufficient detail to suggest a general
method of approach. The volume velocity is

U _- (RNL A2 .7/1l.36 x 10-5)1/1.7

The quantity RN will be replaced by its value in terms of
Rr, from Eq. (Yý.6a.32), which is

RNL = 2Rr NL) -11
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The pressure is p = URtotal = U(2Rr + RNL), which can be

expressed as

p = 2Rr(QI/QNL)U

The radiation resistance is Rr = (2) 2Tpfo 2 /c. When this
sequence of calculations is combined and expressed in
numerical values for air at room temperature, the result is

p=3.0( 6 .8 x 10- 6 )(r f )3.2 'IL (1NL 1)0.59 rms dyne/cm2

00 QNL QNL

(12.6a.34)

where ro is the aperture radius in inches. For example, if
a resonator is designed for optimum small-signal operation
in open space at 55 cps, with an aperture radius of 4.7
inches, Eq. (12.6a.34) indicates that the pressure which
will reduce the Q to Qi/2 is approximately 600 dyne/cm2 ,
corresponding to a sound pressure level of 130 db (re 0.0002
dyne/cm2 ). Furthermore, according to (12.6a.33), the
resonance absorption is reduced to 0.75 of the small-signal
value.

The non-linear behavior of a screen or cloth in the
orifice may be different from that of the orifice itself,
and may become important at smaller sound pressures. For
this reason, the result above is most accurate when the ori-
fice contains no additional resistive material.

Another special non-linear resonator problem which can
be treated easily is as follows: given the sound pressure
level at which a resonator with no added resistance material
is to represent an optimum design, find the effective value
of E (which now represents the added resistance due to
non-linearity rather than that due to cloth or screen), so
that the optimum design can be computed with the charts
already given. This problem can be solved by a procedure
similar to the one used in the preceding case, but the
resulting equations are much less convenient for direct
calculation. Therefore the results are expressed in chart
form, in Fig. 12.6a.8. The results shown apply to a
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frequency of 220 cps, but are sufficiently accurate for all
audio frequencies below 500 cps. Experience in the use of
this chart will show that the resonator volume for optimum
design increases with increasing sound pressure, so that
there is always some sound pressure level above which an
optimum design is not practical.

The non-linear resistance is less important in relation
to the other resistances and causes less reduction in absorp-
tion, in those resonators which are designed for broad-band
operation. Those are the maximum-volume, large-aperture
resonators. Therefore, when the sound pressure is so large
that an optimum design is impossible, the greatest absorp-
tion possible under the circumstances is obtained by using
a short-neck resonator of maximum allowable volume. The
absorption under these conditions can be calculated by mak-
ing successive approximations until a value of volume velo-
city is found which is consistent both with the driving
pressure and with the non-linear resistance which was
assumed in arriving at the volume velocity.

The driving pressure, p, is equal to twice the incident-
wave pressure in the case of the resonator in a large wall.

All relations derived for non-linear effects in this
discussion have applied to frequencies in the vicinity of
resonance. The non-linear effect is much less important at
frequencies outside the normal bandwidth region.

The End-Correction Factor in Special Cases. The value
of the end-correction factor P has been computed for a
number of cases in which the aperture and the cavity cross
section have simple shapes a_.l/. The total value of 0
for a given aperture is the sum of the values for its two
ends. The value P. for one end of the aperture is given
by the relation

e =0.5 - o.625 4

< 0.4) (12.6a.35)

where the variable • is defined for the following cases:
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Concentric circular hole of radius ro opening
into circular tube of radius R, 4 = rIR.

Concentric circular hole of radius ro opening
into square tube of side 2a, e = ro/a.

Concentric square hole of side 2al opening into
square tube of side 2a, 4=al/a.

Circular or square hole opening in large plane
wall, 4 = 0.

For example, for a circular hole of radius 3 in. which
opens on one side in a large wall and on the other side into
a concentric circular tube of radius 10 in.,

=[0.5-0.625(0)] + [0.5-0.625(3/10)] = 0.5 + 0.31 = 0.81

Temperature Effects. Thetemperature coefficient of
the frequency of resonance is equal to that of the speed of
sound. Thus, fo is proportional to the square root of the
absolute temperature, so that under ordinary conditions
the frequency of resonance increases approximately one per-
cent for a temperature increase of lOOF. It is easily
possible to design a resonator having sufficiently high Q
(50 or more) that a one percent frequency change will reduce
the absorption at constant frequency to one-half. Thus it
is desirable to design for the smallest optimum-design Q
when a single resonator must absorb a constant frequency

FIGURE 12.6a.8

The effect of nonlinear resistance in an optimum-design resonator,
for air at room temperature. Values are derived for 220 cps, but
may be used for audio frequencies below 500 cps. It is assumed
that no extra flow resistance element has been added to the aper-
ture. To use the chart, determine the expected sound pressure
level and the expected ratio t/ro of aperture thickness to aper-
ture radius, and then find the resistance-increase parameter
from the chart. Complete an optimum resonator design as for small
signals, with this value of '- as a starting point. The optimum
design performance will then be realized when the resonator is
exposed to the sound pressure level originally assumed, rather
than under small-signal conditions. From Ingard __. 1.
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under conditions of fluctuating temperature. This diffi-
culty is not pronounced in the case of a stagger-tuned
array of resonators, since all frequencies of resonance
are affected by the same factor when the temperature changes.

Practical Tuning of Resonators. The approximations
made in calculating the frequency of resonance, or tolerances
in construction, may result in serious mistuning of a high-
Q resonator which is intended to operate at a specific
frequency. The most reliable solution to the tuning pro-
blem is to adjust the resonator to the proper frequency after
installation. The adjustment may be performed by varying
either the volume or the area of the opening. An indication
of proper adjustment may be obtained by use of a sound level
meter connected to a pressure microphone located outside
the resonator next to the resonator opening. When the
resonator is exposed to constant intensity sound of the fre-
quency that one wishes to absorb, the resonatoristuned by
adjusting the resonator variable for a minimum sound level
meter reading compared to the initial sound pressure level.

Another source of tuning error is the non-linear
contribution to the acoustic mass, which becomes important
at high signal levels. This non-linear effect is generally
less important than the non-linear resistance and hence has
not been considered in the analysis. Provision for tuning
adjustment is particularly desirable to compensate for this
effect where strong signals are expected.

Significance of Reverberation Time. When a resonator is
used as a sound absorber in a room intended for listening to
music or speech, the reverberation time of the resonator
should be less than that of the room at the frequency of
resonance, in order to avoid a localized "hold over" follow-
ing transient signals. This requirement on the reverbera-
tion time is ordinarily not difficult to satisfy. For
example, stagger-tuned resonator arrays have been successfully
used to provide low-frequency absorption in small radio
studios.

Numerical Examples of Resonator Design. As a first
example, it will be supposed that an optimum-design, wall-
mounted resonator is required to operate at 55 cps, with a
bandwidth of 2.2 cps.
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Since the Q is relatively low (25), it will be desir-
able to use the simplified design procedure for the short-
neck resonator. The design is possible, since a Q as low
as 13 can be obtained with a wall-mounted resonator.

From Eq. (12.6a.24), the required volume is 4.24 ft 3 .

From Eq. (12.6a.25), the aperture radius is 2.44 in.

From Eq. (12.6a.28), the added flow resistance must
be 0.15 rayls.

The reverberation time is 2.19 Ql/fo, or 1.0 sec.

From Eq. (12.6a.34), the driving sound pressure at
which the Q. is halved is 110 dynes/cm2 , correspond-
ing to a sound pressure of 55 dynes/cm2 in the wave
incident on the wall, a sound pressure level of 109 db.
This is also the incident sound pressure at which the
center-frequency absorption is reduced to 75 percent
of the small-signal value due to non-linear operation
according to Eq. (12.6a.33).

The maximum small-signal absorption (?\o 2/2r) is 64
sabins at a wavelength of 20 ft.

As a second example, suppose that it is desired to
determine the dimensions of a short-neck resonator, with no
added resistance in the aperture, which shall represent an
optimum design at 60 cps when used in space where the inci-
dent SPL is 110 db. The initial step is to consult
Fig. 12.6a.8, according to which E = 4.9 under the given
conditions. The remaining steps are carried out according
to the "Procedure for optimum design calculation", given
following Eq. (12.6a.22).

From Fig. 12.6a.2, h = 0.18

From Fig. 12.6a.3, a1 = 34 cm.

From Fig. 12.6a.4, k0 a1 = 0.39

From Fig. 12.6a.4, rna = 0.29, so that r° = 9.9 cm.

From Eq. (12.6a.13), F = 1.34.
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The maximum absorption cross section
is 1.35 •o2/4• = 37 sabins.

From Fig. 12.6a.5, Q1 = 29•

References for Sec. 12.6a

6a•l Ingard, Uno, "On the Theory and Design of
Acoustic Resonators" J. Acous Soc Am
25 1037 (1953)•
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12.9 Acoustical Shielding Properties of Walls and Structures

A common problem is that of using a wall or building
to obtain acoustic shielding from a noise source. This type
of solution is of value when the noise source is movable or
where covering it completely with a muffling structure would
interfere with the operation of the device. For example,
annoyance to nearby residences due to the noise of large, out-
door power substation transformers can sometimes be reduced
by partially enclosing them by walls. Or engine run-ups in
airports near residential areas can be made less annoying if
hanger structures are suitably placed to provide acoustical
shielding.

General Design Procedure. Data showing the noise
reduction provided by walls have been reported by Fehr and
by Hayhurst .2 The chart presented by Fehr is based
on the Fresnel diffraction of a wave from a line source
parallel to an infinitely long edge. As a result of field
measurements, several modifications to the Fehr formula have
been made. In addition, several factors which Fehr has not
considered but which enter into the practical acoustical pro-
blem such as a finite wall, atmospheric turbulence and ground
attenuation are also discussed.

Figure 12.9.1 shows the geometrical situation being
considered. The sound source is at a distance R on the ground
behind a wall or structure of height H. At a distance D on
the other side of the wall, also on the ground is the point
where the sound level is to be calculated.

One calculates the parameter X given by

X = 2[R(Vl + (H/R) -1) + D(Vl + (H/D-) I/M[ + (H/R)2].

(12.9.1)

For the common situation where D ?7 R and R > H,

X : H2 /XR (12.9.2)

where X is the wavelength of sound in air which for a fre-
quency f (in cps) is 1120/f feet. As one expects, the shield-
ing effect depends on frequency. At low frequencies, the
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diffraction around the obstacle leads to relatively high
sound levels at D while for high frequencies the "beaming"
tendency causes D to lie in an acoustic shadow zone.

Figure 12.9.2 gives the noise reduction (NR) in decibels
for a given value of X. The line is a plot of the equation

(NR) = 10 log 20X (12.9.3)

Factors Modifying Shielding Noise Reduction. The value
of NA calculated from Eq. (12.9.3) or Fig. 12.9.2 would
actually be measured if the source were on the ground, the
ground presented an infinitely high impedance and the atmos-
phere were a quiescent, homogeneous medium. As pointed out
in Sec. 12.8, the presence of wind and temperature gradients
in the atmosphere can lead to the deflection of sound upward
or downward. In the first case, there is an acoustical
shadow zone formed, while in the second, sound energy
originally traveling upward is deflected down. For a quanti-
tative discussion of these effects, the reader is referred
to the work of Ingard and Pridmore-Brown 9.3, 9.4/ and
Stevens and Bolt 9.5/. In the following sections, we consider

SHIELDING WALL
OR STRUCTURE

-T

SOUND H
SOURCE I LISTENER

R " -- D -

FIGURE 12.9.1
Sketch showing geometrical arrangement considered. A sound
source is on the ground at a distance R behind a shielding
wall or structure of height H. The listener is on the other
side of the wall or obstacle at a distance D. For a thick
structure, D is measured from the side nearest the sound source.
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the modifications necessary to account for

1. the sound source not being on the ground

2. absorption by the ground

3. atmospheric turbulence

4. "flanking" around the side of a structure

1. Consider the situation shown in Fig. 12.9.3
where a sound source is located some height h above the
ground and at a distance R from a shielding wall or struc-
ture. Ray A shows the direct path from the source to the
obstacle. For very high frequencies, this ray also marks
the edge of the shadow zone. Any sound energy found below
Ray A on the receiving side of the shield must be there
because of diffraction, by virtue of the wave nature of
sound. For a certain frequency Ql the distance SO along
path B is longer than that along path A by X/2. The two
waves then destructively interfere, causing higher shield-
ing than would otherwise be the case. For this to occur

C/2

[(H + h) 2 + R2]1/2 - [(H - h) 2 + R21]I/2

(12.9.4)

When the path length difference between the direct and re-
flected ray is one wavelength, there will be pressure doubl-
ing at point 0. Consequently the sound pressure will be 6 db
higher and there will be a minimum in the shielding effect.
This second case will occur at a frequency V2 given by
12 = 2{l. When (H+h) and (H - h)<<R, we find for Vi

_1 = cR/4Hh (12.9.5)
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2. Now consider the effect of the absorption of sound
due to the finite acoustic impedance of the ground. In the
absence of the shield, sound would travel from the source to
the receiver with an attenuation due to inverse square spread-

* ing (6 db per distance doubling) plus some additional ground
attenuation. However, when an obstacle is present, the
sound which reaches the receiver has traveled over the obstacle
and so has suffered less ground attenuation. Therefore, a
measurement of the sound level with and without the obstacle
should show somewhat less shielding than diffraction theory
(which assumes infinite ground impedance) would predict. Add-
ing the obstacle has introduced shielding but has prevented
the terrain attenuation from being as great as when the
ground was fully exposed.

To correct this effect, one must know the ground
attenuation for the type of terrain involved (concrete, bare
earth, low or high grass, etc.). Then plot the attenuation
expected for the distance R + D as a function of frequency.
On the basis of this, estimate the expected terrain attenua-
tion considering the height of the structure and/or the
fraction of the total path length R + D occupied by the
shielding obstacle. Such a curve for the special case of high
grassy terrain is shown in Fig. 12.9.4. The estimate of the
percent of the terrain attenuation which should be taken
when a shielding structure is in place is, of course, some-
what arbitrary. However, it is important to make some
estimate of the effect in the frequency region where it is
important, even if the magnitude of the correction is
doubtful.

3. Next consider the effect of atmosphere turbulence.
So far, it has been assumed that the air is still and that

FIGURE 12.9.2

Noise reduction (NR) in decibels due to a shielding structure.
To find the shielding for a wavelength A for given values of
R, H and D, calculate x by Eq. (12.9.1) or (12.9.2) and read
the (NR)from this chart. This value of(NR)must be corrected
for the height of the source above the ground, terrain attenua-
tion and turbulent scattering in the atmosphere, as discussed
in the following sections.
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there is no turbulence. For wind velocities less than 5 mph,
this is approximately true although even in "still"air,
there is a turbulent layer of air about 100-300 ft thick at
the surface of the earth. Therefore, there will always be
some sound scattered down into the region bounded at the top
by Ray A of Fig. 12.9.3. But since the amount of turbulence
increases with wind velocity, it is expected that the
scattering effect, and thus the deviation from the noise
reduction predicted from Fig. 12.9.2 would increase with wind
velocity. This effect should be relatively independent of
wind direction as long as the turbulence is roughly isotropic.

While the amount of turbulent scattering is independent
of wind direction, it must be remembered that except for the
case of a crosswind, the wind may create a shadow zone. The
presence of a shadow zone will, of course, modify the shield-
ing prediction. The reader is again referred to Refs. 9.3-
9.5.

B

SOUND

SOURCE -ZONE

S SHIELDING
S H STRUCTURE

R

FIGURE 12.9.3
Geometric illustration of the effect of having the source above
the ground. Frequency-dependent interference effects will be
observed due to the two possible paths from the sound source to
the shielding structure.
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Figure 12.9.5 shows approximate corrections to the expected
noise reduction which were found from a set of field measure-
ments. The curves give the correction to be subtracted
from the predicted noise reduction to account for turbulent
scattering.

4. The last point, flanking around an obstacle due
to its finite length, can best be illustrated by a set of
measurements taken with a sound source located at a point
R = 50 ft and 50 ft from the.edge of a structure 40 ft high
and 200 ft deep. Figure 12.9.6 shows measurements in four
frequency regions. From these polar plots, it can be seen
that the maximum shielding effect is not obtained unless the
receiving point is on the 00 line, or directly opposite the
source. The 450 lines show the geometric "shadow". Near
this line, the shielding is quite small compared to the
calculated (maximum) value. In general, a good idea is to
have the distance from the sound source to the edge of the
shield at least twice the distance R. If the shield has
"wings" such as to enclose the sound source on more than
one side, this precaution will, of course, be unnecessary.

Numerical Example. Consider the following case. We
wish to calculate the shielding at a distance of 400 ft of
a structure 40 ft high along the 00 line. There is a cross-
wind whose speed is 10 mph, the ground is covered by long
grass (this is the type of ground for which Fig. 12.9.4 was
drawn) and the sound source is 50 ft from the wall and well
back from the edge of the structure. Table 12.9.1 shows
the calculations for octave bands (carried out for the
geometric mean frequency of the band limits). Then R = 50,
H = 40, D = 400 ft. Consider the sound source to be on the
ground.

From the approximate Eq. (12.9.2), one can see that
the shielding increases with frequency and with the wall
height, but decreases as the sound source is moved back
from the wall (R increasing). The shielding also decreases
as the listener moves back from the wall (D increasing).
Atmospheric turbulence and the effect of ground absorption
decrease the shielding from what diffraction theory would
predict.
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TABLE 12.9.1

Goo- Ground
metric X from Eq. Absorp- Tur-

Fre- Mean (12.9.1) tion bulence Total Cor-
quency Fre- or (NR) from Cor- Cor- Cor- rected
Band quency (12.9.2) Fig. 12.9.2 rection rection rection NR
cps CPS db db db db db

20-
75 39 0.60 11 0 0 0 U1

75-
150 106 1.6 15 -0.7 0 -0.7 14

150-
300 212 3.4 18 -1.5 0 -1.5 16

300-
600 424 6.6 22 -1.7 -1 -2.7 19

600-
1200 848 13.1 24 -1.4 -3 -4.4 19

1200-
2400 1700 26.4 27 -1.1 -5.5 -6.6 20

2400-
4800 3490 54.1 30 -0.6 -9 -9.6 20

4800-
10000 6930 107 33 0 -12 -12 21

FIGURE 12.9.4

Iflustration of the method of correcting the NR found from Fig.12.9.2
for the effects of ground attenuation. Curve A shows the absorption
(in excess of inverse-square spreading) of 450 ft of grassy terrain.
Curbs B is the estimated ground attenuation when the shielding struc-
ture is in place, and is obtained from Curve A by taking a certain
fraction of the values for the unobstructed case. For the dimensions
used in the numerical example, Curve B = (Curve A)/2.
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50 - 100 CPS 125 -320 CPS

20 20

ODB 0DB

400-10001CPS 1250-4000 CPS

DB D

SOUCESOU•' RCE

4

ODB 0 DB
FIGURE 12.9.6

* These curves show the average measured attenuation in four frequency ranges whene
the source is located close to the edge of an airplane hangar. The attenuation
is shown at various angles with respect to the edge of the geometrical shadow
created by the hangar (marked by the heavy line at 450).
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Errata to WADC TR 52-204, Volume I

Page

vii line (17) for wrapping read wrappings

viii line (6) for temperatures read temperature

viii add Sec. 15 "Attenuation of Sound. Within Piping"

xi title Fig.' 3.4 read Q >1

xi title Fig. 3.5 read Q.<I

xii title Fig. 6.4 for of read between

18 line (8) for sound pressure read sound. pressure level

20 line (5) for result read results

23 line (5) of text for median read medians

29 line (7) for .7% read 0.8%

46 the remark made in connection with Fig. 2.9 is true
only in the limit of low frequencies

63 line (22) write to
National Noise Abatement Council
9 Rockefeller Plaza
New York, N. Y.

64 add Noise Control
57 East 55th Street
New York 22, N. Y.

A bi-monthly journal published by the
Acoustical Society of America, directed to the
reader with practical noise problems. In addi-
tion to technical information, this magazine
presents discussions of the legal aspects of
noise control and pertinent news items concerning
noise problems.

98 line (35) read. Fig. 4.1
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Page

123 read Eq. (5.2a)

W [5.70] S 3 (T - Ta) 3  A
T 286

123 line (11) for T read T
0 a

135 Caption Fig. 6.2 read 0L/U

149 line (29) for centrifugal read axial-flow

257 line (4) for k t read ko t

268 see Fig. 12.1.9 for a more complete figure,
with all materials identified

279 lines (1) - (6) of text read:

The action of the bend may be explained
qualitatively by the statement that
incoming sound waves travel across the bend
to strike the absorbent lining, where a large
portion of the energy may be absorbed. A
smaller portion of the energy, reflected back
toward the source, is partially absorbed upon
again traversing the incoming duct section.

342 ref. (22) for Reference (10) read Reference (8)
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